A integração entre diferentes instituições e setores da sociedade para o conhecimento da biologia e a conservação do criticamente ameaçado Aracuã-guarda-faca (Ortalis remota Pinto, 1960)

Alex Augusto Abreu Bovo^{1,2} *

- https://orcid.org/0000-0002-9457-5301
- * Contato principal

Katia Maria Paschoaletto Micchi de Barros Ferraz^{1,2}

- https://orcid.org/0000-0002-7870-8696
- Universidade de S\u00e3o Paulo/USP, Escola Superior de Agricultura Luiz de Queiroz/ESALQ, Piracicaba/SP, Brasil. <alex_bovo@hotmail.com, katia.ferraz@usp.br>.
- ² IUCN SSC Grupo Especialista em Planejamento de Conservação/CPSG Brasil, Foz do Iguaçu/PR, Brasil. CEP: 85.859-899. <alex_bovo@hotmail.com, katia.ferraz@usp.br>.

Recebido em 24/05/2022 - Aceito em 22/08/2023

Como citar:

Bovo AAA, Ferraz KMPMB. A integração entre diferentes instituições e setores da sociedade para o conhecimento da biologia e a conservação do criticamente ameaçado Aracuã-guarda-faca (*Ortalis remota* Pinto, 1960). Biodivers. Bras. [Internet]. 2023; 13(4): 1-6. doi: 10.37002/biodiversidadebrasileira.v13i4.2268

Material Suplementar 1

Relatório da Modelagem de Distribuição de Espécie

A modelagem de distribuição do *Ortalis remota* foi realizada com a parceria entre Alex A. A. Bovo e Katia M. P. M. B. Ferraz, como membros do IUCN SSC CPSG Brasil e ESALQ/USP, e Carlos Gussoni, representando a SAVE Brasil. O trabalho foi realizado através do processo de modelagem participativa por meio de reuniões via Skype. Os modelos foram construídos através de informações coletadas previamente, com a colaboração do especialista Carlos Gussoni. Durante as reuniões, os modelos foram apresentados, rediscutidos e o modelo final foi aceito pelo especialista

O modelo de distribuição de espécies foi gerado através de pontos de presença da espécie fornecidos pelo especialista (53 pontos de presença; Figura 1). Todos os pontos foram coletados durante

o ano de 2018. Esses pontos foram submetidos ao procedimento de rarefação para eliminar a dependência espacial entre eles, através da função "thin.algorithm", do pacote "SpThin" (Aiello-Lammens et al. 2019) no programa R versão 3.6.1 (R Core Team 2019). A distância para a rarefação foi de 1 km. Após o processo de rarefação, 33 pontos foram selecionados para o processo de modelagem.

O espaço geográfico definido para a modelagem foi limitado às áreas entre os rios Grande, Paraná, Tietê e Sapucaí. O limite sudeste foi definido a partir da distância máxima de 150 km dos pontos de ocorrência da espécie.

As variáveis ambientais disponíveis para a modelagem incluíam informações bioclimáticas, de paisagem, topográficas e de relevo e drenagem. As variáveis foram submetidas à análise de Correlação de Pearson, considerando como correlacionadas as variáveis com valor igual ou superior a 0,7 e igual ou inferior a -0,7. Assim, foram selecionadas 13 variáveis para a construção do modelo (Tabela 1). A resolução espacial adotada para a modelagem foi de 1 km.

2 Bovo AAA, Ferraz KMPMB

Os modelos foram gerados no software Maxent (v.3.4.1, Phillips et al. 2006; Phillips & Dudik 2008; Phillips et al. 2017a, b). Foi utilizado o método *bootstrap* com 10 partições aleatórias com

substituição, utilizando 70% dos pontos para treino e 30% para teste. Os modelos foram rodados com random seed, limiar de convergência de 10^{-5} , 500 iterações e 10.000 pontos de background.

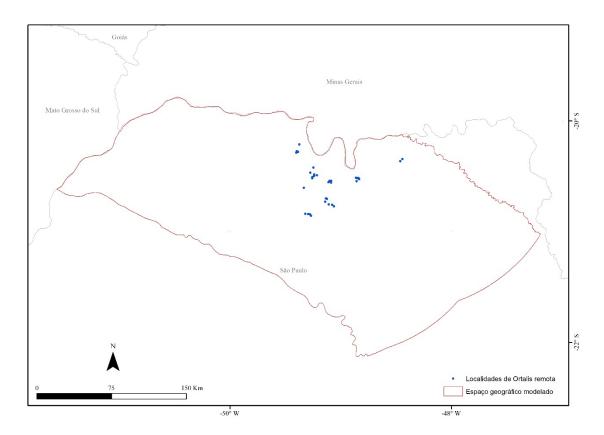


Figura 1 – Base de registros de presença atuais de Ortalis remota.

Tabela 1 – Variáveis ambientais selecionadas para o modelo de Ortalis remota.

Nome	Descrição	Resolução espacial	Ano	Fonte
Altitude	Altitude acima do nível do mar	30 m	2000	https://www2.jpl.nasa.gov/srtm/
Bio3	Isotermalidade	1 km	1960-1990	$\begin{array}{l} \text{http://worldclim.org/version2; Fick \& } \\ \text{Hijmans 2017} \end{array}$
Bio15	Sazonalidade da precipitação	1 km	1960-1990	http://worldclim.org/version2; Fick & Hijmans 2017
Bio18	Precipitação do trimestre mais quente	1 km	1960-1990	$\label{liminorg} \mbox{http://worldclim.org/version2; Fick \& Hijmans 2017} $
Tree Cover	Porcentagem de cobertura florestal	1 km	2010	https://landcover.usgs.gov/glc/ TreeCoverDescriptionAndDownloads.php; Hansen et al., 2013
Outras Florestas	Porcentagem de Outras Florestas	1 km	2014	https://www.earthenv.org/landcover; Tuanmu & Jetz 2014
Contraste	Diferença ponderada exponencialmente no EVI (Enhanced Vegetation Index) entre pixels adjacentes	1 km	2015	https://www.earthenv.org/texture; Tuanmu & Jetz 2015

Homogeneidade	Similaridade do EVI entre pixels adjacentes	1 km	2015	https://www.earthenv.org/texture; Tuanmu & Jetz 2015
MapBiomas	Uso e cobertura do uso do solo	30 m	2018	www.mapbiomas.org
Declividade	Declividade do terreno	30 m	2000	Derivada a partir do arquivo de altitude
Índice de Rugosidade do Terreno	Índice de Rugosidade do Terreno	1 km		https://www.earthenv.org/topography; Amatulli et al. 2018
NDVI	Normalized Difference Vegetation Index	1 km	2019	https://land.copernicus.eu/global/products/ndvi
Distância de água	Distância do pixel até o corpo d'água mais próximo	30 m	2013	Derivada a partir do arquivo de corpos d'água da Agência Nacional de Águas

O modelo de distribuição de *Ortalis remota* apresentou alto valor de AUC $(0.946\pm0.025;$ Figura 2). O modelo final foi cortado em 4 classes de acordo com a adequabilidade: muito

baixa: 0-0,25; baixa: 0,25-0,5; média: 0,5-0,75; e alta: 0,75-1 (Figura 3). A tabela 2 apresenta a quantidade de área presente em cada uma das classes de adequabilidade.

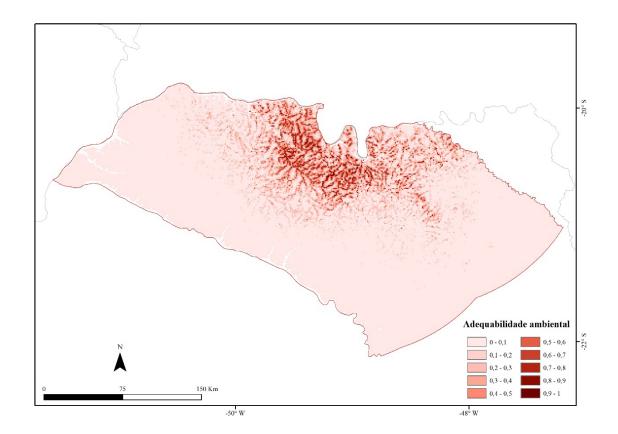


Figura 2 - Modelo de distribuição de Ortalis remota.

Bovo AAA, Ferraz KMPMB

As variáveis que mais explicaram a distribuição de *Ortalis remota* foram a isotermalidade

(contribuição de 47,9%), distância de água (16,1%), uso e cobertura do solo (9,9%) e NDVI (8,1%).

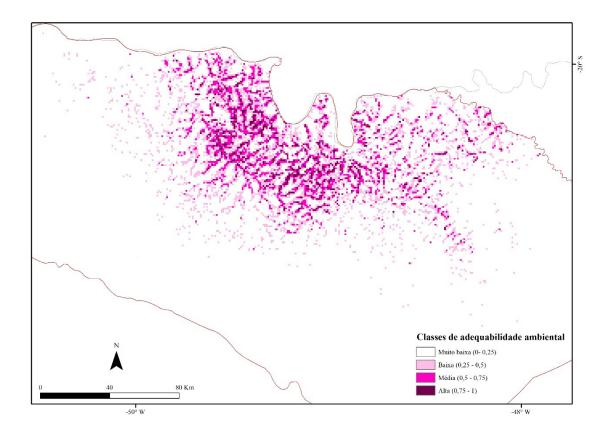


Figura 3 – Modelo de distribuição de *Ortalis remota* dividido em quatro classes de acordo com a adequabilidade ambiental.

Tabela 2 – Quantidade de área presente em cada classe de adequabilidade ambiental no modelo de Ortalis remota.

Classes	Área (em ha)	Porcentagem da área modelada		
Muito baixa (0-0,25)	5.068.363	89,49%		
Baixa (0,25-0,5)	380.219	6,71%		
Média (0,5-0,75)	155.414	2,74%		
Alta (0,75-1)	59.694	1,05%		
Total	5.663.690	100.00%		

Referências

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5): 541-545.

Amatulli G, Domisch S, Tuanmu MN, Parmentier B, Ranipeta A, Malczyk J, Jetz W. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific data, 5, 180040.

Fick ES, Hijmans JWR. 2017. 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302-4315

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SAA, Tyukavina A, Kommareddy A. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850-853.

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259. Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31: 161-175.

Phillips SJ, Dudík M, Schapire RE. 2017b. Maxent software for modeling species niches and distributions. Version 3.4.0. Available in http://biodiversityinformatics.amnh.org/open_source/maxent, 2017. Access in: [12/08/2017].

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography, 40(7): 887-893.

R Core Team 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Tuanmu MN, Jetz W. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23(9): 1031-1045.

Tuanmu MN, Jetz W. 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11): 1329-1339.

6 Bovo AAA, Ferraz KMPMB

Material Suplementar 2

Modelos, variáveis e estatísticas relacionadas

Modelo	Variáveis*	AUC	AICc	ΔΑΙС	AICw
Modelo de Distribuição de Espécies	Altitude, Bio3, Bio15, Bio 18, TreeCover, Outras Florestas, Contraste, Homogeneidade, MapBiomas, Declividade, Índice de Rugosidade do Terreno, NDVI e Distância de água	0,946 ± 0,025	-	-	-
md0	1	-	100.84	0	0.99
md1	IIC	-	102.3	1.46	0.01
md2	PCA	-	102.78	1.94	0
md3	APPFLOR	-	102.84	2	0
md4	IIC + PCA	-	104.31	3.47	0.01
md5	IIC + APPFLOR	-	104.48	3.64	0
md6	PCA + APPFLOR	-	104.45	3.61	0
md7	IIC + PCA + APPFLOR	-	106.3	5.46	0.01

^{*} As variáveis do Modelo de Distribuição de Espécies estão descritas no Material Suplementar 1. IIC= Índice Integral de Conectividade. PCA = Componente do eixo 1 (PC1) da análise de PCA com as variáveis: Agricultura perene e semi-perene, Pastagem e Mosaico agricultura/pastagem. APPFLOR= Área de Preservação Permanente com vegetação florestal.

Biodiversidade Brasileira - BioBrasil.

Fluxo Contínuo e Seção Temática: Planos de Ação Nacional para Conservação de Espécies Ameaçadas de Extinção n.4, 2023

http://www.icmbio.gov.br/revistaeletronica/index.php/BioBR

Biodiversidade Brasileira é uma publicação eletrônica científica do Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) que tem como objetivo fomentar a discussão e a disseminação de experiências em conservação e manejo, com foco em unidades de conservação e espécies ameaçadas.

ISSN: 2236-2886

