

REVISTA BRASILEIRA DE ESPELEOLOGIA - RBEsp

v.2, nº 4 (2014)

MORCEGOS CAVERNÍCOLAS DO BRASIL: NOVOS REGISTROS E DESAFIOS PARA CONSERVAÇÃO

CAVE BATS IN BRAZIL: NEW RECORDS AND CONSERVATION CHALLENGES

Maricélio Medeiros Guimarães

Panorama Estudos Ambientais e Universidade Federal de Lavras - UFLA E-mail: mmgbat@hotmail.com

> **Rodrigo Lopes Ferreira** Universidade Federal de Lavras- UFLA

niversidade Federal de Lavras- UFLA/ E-mail: drops@dbi.ufla.br

Resumo

Os morcegos são essenciais à sobrevivência de muitos ecossistemas subterrâneos e, em contra partida, as cavidades naturais subterrâneas representam abrigos vitais para conservação de muitas espécies deste grupo. O Brasil detém mais de 12.000 cavernas conhecidas, mas estima-se que este número equivalha a menos de 10% do total real esperado para o país. Além disso, apenas cerca de 2% dessas cavernas possuem dados disponíveis com relação à fauna de morcegos. No Brasil ocorrem 178 espécies de morcegos, das quais 58 foram documentadas em cavernas, mas, nem todas são consideradas cavernícolas. A ocorrência de morcegos em cavernas brasileiras foi avaliada revisando o conhecimento disponível em literatura sobre 211 cavernas, somado ao inventário de 58 cavernas ainda não estudadas, totalizando 269 cavernas distribuídas em 19 unidades federativas: AM (2), BA (34), CE (4), DF (18), ES (3), GO (63), MG (23), MS (2), MT (3), PA (13), PE (3), PI (1), PR (16), RJ (3), RN (8), SC (2), SE (2), SP (67) e TO (2). Os estudos se concentram principalmente, em São Paulo, Goiás e Bahia. As lacunas de conhecimento existentes sobre a fauna de morcegos dificultam uma série de análises e importantes decisões sobre a preservação de cavernas no Brasil.

Palavras-chave: check list, Chiroptera, conservação de cavernas, ecossistema subterrâneo.

Abstract

Bats are essential to the maintenance of many subterranean ecosystems, and, on the other hand, natural underground cavities are crucial shelters for the conservation of this animal group. Brazil has more than 12.000 known caves, and this is estimated to be less than 10% of the real total in the country. Furthermore, approximately 2% of these caves have data regarding their bat fauna. In Brazil there are 178 species of bats and 58 of these were documented in caves, but not all are considered cave species. The occurrence of bats in caves in Brazil was assessed by reviewing the knowledge available in the literature about 211 caves, plus an inventory in the 58 caves have not studied, totaling 269 caves divided into 19 federal units: AM (2), BA (34), CE (4), DF (18), ES (3), GO (63), MG (23), MS (2), MT (3), PA (13), PE (3), PI (1), PR (16), RJ (3), RN (8), SC (2), SE (2), SP (67) e TO (2). Studies are concentrated in São Paulo, Goiás and Distrito Federal. Gaps in the existing knowledge about the bat fauna in the Brazilian caves hinders a series of analyzes and important decisions about the preservation of caves in Brazil.

Keywords: check list, Chiroptera, conservation of caves, subterranean ecosystem.

1 INTRODUÇÃO

Devido ao forte desenvolvimento econômico alguns ecossistemas brasileiros encontram-se em delicada situação de conservação, sendo muitos organismos afetados diretamente (MITTERMEIER et al., 2005). Com relação aos morcegos, questões relacionadas à transmissão da raiva, utilização de residências como abrigos diurnos e conflito com produtores de frutas (LUO et al., 2013; PACHECO et al., 2010), causam incômodos à população e resultam em matança desordenada. Contudo, um dos fatores mais impactantes ao estado de conservação deste grupo, provavelmente, é a exploração antrópica de áreas cársticas, que interfere negativamente na área de vida das espécies que utilizam-se de cavidades naturais subterrâneas como abrigo (PALMEIRIM & RODRIGUES, 1992).

Uma das novas estratégias utilizadas por conservacionistas para analisar cenários de mudanças sócio ambientais é a análise de horizontes, que se resume, na busca por ameaças e oportunidades que podem influenciar, a longo prazo, as questões analisadas, incluindo perspectivas conservacionistas (SUTHERLAND & WOODROOF, 2009; SUTHERLAND et al., 2014). O uso desta estratégia está aumentando e, recentemente, uma análise de horizontes listou 17 tópicos que podem influenciar na conservação de morcegos no Brasil (BERNARD et al., 2012). Destes, o mais preocupante é a redução na proteção de cavernas devido à alterações na legislação brasileira sobre proteção ao patrimônio espeleológico. Mais além, outra ameaça para conservação dos morcegos é a heterogenidade e fragmentação do conhecimento disponível, merecendo atenção para essas lacunas no conhecimento sobre a distribuição das espécies (BERNARD et al., 2012).

No Brasil existem registros de aproximadamente 15% das mais de 1.200 espécies de morcegos conhecidas em todo mundo (SIMMONS, 2005). Tal riqueza corresponde, no país, a 178 espécies (NOGUEIRA et al., 2014). Entretanto, há uma total carência de estudos em cerca de 60% do território brasileiro e nenhum dos biomas encontram-se minimamente amostrados (BERNARD et al., 2011). Assim, a atual diversidade de morcegos no Brasil ainda é uma subestimativa, representando um retrato temporário da quiropterofauna brasileira (TAVARES et al., 2008).

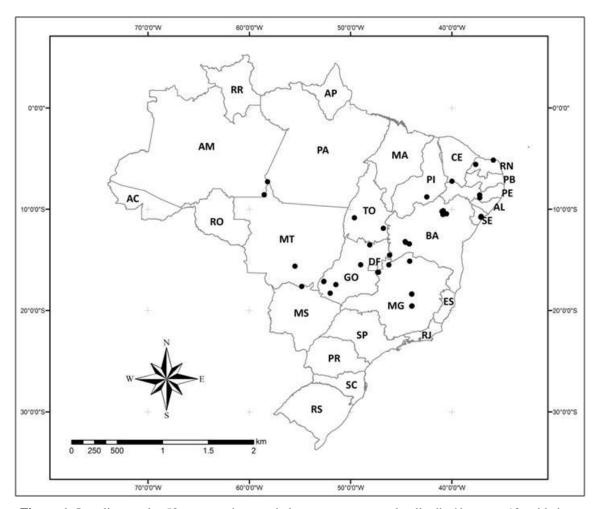
Os morcegos estão entre os poucos vertebrados a utilizarem de maneira eficiente e permanente as cavernas como abrigo (KUNZ, 1982). Desta forma, compreendem um grupo de grande relevância ecológica já que são essenciais à manutenção de muitos ecossistemas subterrâneos (PALMERIM & RODRIGUES, 1992; FERREIRA et al., 2007). Contribuem, diariamente, com o aporte energético ao ecossitema subterrâneo (por meio da deposição do guano) e, eventualmente, com seus próprios cadáveres. Sendo assim, tais organismos constituem agentes de grande importância atuando, diretamente, na importação de energia para ecossistemas subterrâneos (FERREIRA et al., 2007).

Em alguns locais, a importância dos morcegos cavernícolas é reconhecida. Um bom exemplo é Portugual, que implantou há cerca de 20 anos seu "Plano Nacional de Conservação dos Morcegos Cavernícolas" (PALMEIRIM & RODRIGUES, 1992). O Brasil não tem algo tão específico, mas possui um plano de ação para conservação de morcegos urbanos (PACHECO et al., 2010). Arita (1996) sustenta que a preservação das cavernas deveria ser a principal estratégia quando se pensa em conservação da fauna de morcegos cavernícolas, pois, os ambientes subterrâneos são essenciais para preservação de populações de muitas espécies (LUO et al., 2013).

As pesquisas sobre morcegos cavernícolas brasileiros se iniciaram com Ruschi (1952). Contudo, foi Dessen e colaboradores (1980) que apresentaram um levantamento preliminar da fauna encontrada em cavernas do Brasil, realizado de forma esporádica entre os anos 1971 e 1980, o qual listava oito espécies de Chiroptera. Trajano (1995) atualizou esta lista, indicando o registro de 35 espécies de morcegos brasileiros ocorrendo em cavernas. Este número, no entanto, é baixo quando comparado a outros países como o México e a China, onde 60 (ARITA, 1993) e 97 (LUO et al., 2013) das espécies de morcegos utilizam cavidades naturais subterrâneas como refúgio.

Segundo Arita (1993), os morcegos podem ser classificados de acordo com o uso que fazem de cavernas como: (i) preferencialmente cavernícola, para espécies onde o principal abrigo são cavernas; (ii) usualmente cavernícola, para as frequentemente encontradas tanto em cavernas quanto em outros abrigos; (iii) ocasionalmente cavernícolas, para aquelas que já foram registradas em cavernas, mas têm preferência por outros abrigos; e (iv) não cavernícola, para espécies não registradas em cavernas.

Os inventários sobre morcegos em cavernas brasileiras incluem os estados da Bahia (DESSEN et al., 1980; GREGORIN & MENDES, 1999; FARIA et al., 2006; SBRAGIA & CARDOSO, 2008), Espírito Santo (RUSCHI, 1952), Ceará (DESSEN et al., 1980; UIEDA et al., 1980; SILVA et al., 2001), Minas Gerais (TRAJANO & GIMENEZ, 1998), Mato Grosso (TRAJANO & GNASPINI, 1991; PINTO-DA-ROCHA, 1995); Mato Grosso do Sul (PINTO-DA-ROCHA & SESSEGOLO, 2001), Pará (TRAJANO & MOREIRA, 1991; PINHEIRO et al., 2001), Paraná (SILVA-DA-ROCHA et al., 2001; SESSEGOLO et al., 2001; ARNONE & PASSOS, 2007), Rio de Janeiro (ESBÉRARD et al., 1997), Rio Grande do Norte (COELHO, 2006) e Santa Catarina (PINTO-DA-ROCHA et al., 2001; ARNONE & PASSOS, 2003). A maioria se concentra em três unidades federativas, Goiás (DESSEN et al., 1980; SIQUEIRA, 1995; BREDT & JÚNIOR, 1996; ESBÉRARD et al., 2001, 2005; SILVA et al., 2009; CHAVES et al., 2012), São Paulo (DESSEN et al., 1980; TRAJANO, 1985; CAMPANHÃ & FOWLEr, 1993; ZEPPELINI et al., 2003; ARNONE, 2008) e Distrito Federal (BREDT et al., 1999; BREDT & MAGALHÃES, 2006; AGUIAR et al., 2006; PORTELA, 2010).


Frente às modificações na legislação concernente ao patrimônio espeleológico, atualmente, as cavidades naturais subterrâneas são classificadas de acordo com seu grau de relevância em máximo, alto, médio ou baixo, por meio da análise de seus atributos ecológicos, biológicos, geológicos, hidrológicos, paleontológicos, cênicos, histórico-culturais e socioeconômicos (BRASIL, 1990; BRASIL, 2008). Dos 45 atributos analisados para se determinar o grau de relevância de uma caverna brasileira, 17 (38,63%) estão, direta ou indiretamente, relacionados à fauna de morcegos (MMA, 2009). Assim, a proteção das cavernas encontra-se relacionada à sua relevância e reconhecer quais e como as espécies de morcegos interagem com o ecossistema subterrâneo é ferramenta chave para tomada de importantes decisões com relação ao desenvolvimento sustentável e preservação do Patrimônio Espeleológico no Brasil.

Nesta perspectiva, este estudo teve como objetivo inventariar espécies de morcegos associadas a cavidades naturais subterrâneas no Brasil. Para tal, foi analisada a literatura sobre ocorrência de morcegos em cavernas brasileiras, somando os dados de inventários realizados em 58 cavernas. São apresentadas duas listas: (i) espécies de morcegos brasileiros classificados segundo o uso de cavernas; e (ii) cavernas brasileiras que possuem estudos sobre morcegos. Por fim, uma análise sobre as lacunas de conhecimento e o histórico concernente às ferramentas legais relacionadas ao

Patrimônio Espeleológico Brasileiro apontam os desafios para conservação dos morcegos cavernícolas no Brasil.

2 MATERIAIS E MÉTODOS

A área de estudo compreende todo o território brasileiro (8.515.767,049 km² - IBGE, 2010). As cavernas estão contextualizadas segundo a base de dados geoespaciais de cavernas do Centro Nacional de Pesquisa e Conservação de Cavernas, do Instituto Chico Mendes de Conservação da Biodiversidade (CECAV, 2014), que possuía em 28/02/2014, 12.376 cavidades naturais subterrâneas cadastradas. Foram inventariadas 58 cavernas (Figura 1), distribuídas em 12 unidades federativas: AM (1), BA (17), CE (1), GO (8), MG (19), MS (1), MT (2), PE (2), PI (1), RN (2), SE (2) e TO (2).

Figura 1- Localização das 58 cavernas inventariadas no presente estudo, distribuídas entre 12 unidades federativas no Brasil: AM (1), BA (17), CE (1), GO (8), MG (19), MS (1), MT (2), PE (2), PI (1), RN (2), SE (2) e TO (2). Obs.: Devido ao baixo nível de detalhes alguns pontos representam mais de uma caverna.

Os inventários ocorreram durante a realização de 11 projetos, sendo sete relacionados a estudos ambientais exigidos em processos de licenciamento ambiental (Caracterização Espeleológica da Ferrovia de Integração Oeste-Leste; Monitoramento da UHE Cana Brava; Caracterização Espeleológica da PCH Mata Velha; Caracterização Espeleológica da PCH Serra das Agulhas; Monitoramento da UHE Ponte de Pedra; Monitoramento da PCH Boa Sorte; Caracterização da Gruta Morro Chico Caboclo) e quatro relacionados a projetos acadêmicos (projeto Inventário de *Lonchophylla dekeyseri*, desenvolvido durante graduação em Ciências Biológicas/UFG; projeto

Morcegos Cavernícolas do Parque do Sumidouro desenvolvido durante a disciplina Ecologia de Campo da Pós Graduação em Ecologia Aplicada/UFLA; projeto de Inventário da Fauna Cavernícola Brasileira desenvolvido pelo Centro de Estudos em Biologia Subterrânea/UFLA; e projeto Morcegos Cavernícolas do Brasil desenvolvido durante mestrado em Ecologia Aplicada/UFLA).

Foi realizada amostragem por meio de captura em 42 destas cavernas (Apêndice A), sendo utilizada rede-de-neblina em 29 das cavernas; rede-de-neblina e armadilha de fio (*harp traps*) em 12; e apenas armadilha de fio em uma caverna (Gruta Sumidouro em Sonora - MS). Os morcegos capturados foram identificados taxonomicamente segundo Vizotto & Taddei (1973), Dias et al. (2002), Gregorin & Taddei (2002), Reis et al. (2007), Dias & Peracchi (2008) e Gardner (2008). Alguns espécimes foram coletados como material testemunho e encontram-se depositados na Coleção de Mamíferos da Universidade Federal de Lavras (CMUFLA). Todas as cavernas foram exploradas durante o período diurno e os morcegos encontrados foram documentados por meio de registro fotográfico. Carcaças encontradas também foram consideradas.

Certas espécies de morcegos possuem características diferenciais que permitem, caso o pesquisador possua experiência, a correta identificação por meio de avistamento seguidos por um bom registro fotográfico (uma boa foto ilustra claramente essas características diferenciais). Desta forma, neste estudo, quatro espécies foram consideras aptas de serem identificadas por meio desta técnica seguida de registro fotográfico, são elas: *Natalus macrourus* e *Furipterus horrens* por serem os únicos representantes de suas famílias no Brasil; *Pteronotus gymnonotus* por ser a única espécie ocorrente no Brasil que possui a membrana da asa unida na linha dorsal (Nogueira et al., 2014); e *Noctilio leporinus* que possui uma linha dorsal e um maior tamanho corporal que à diferencia de *N. albiventris* (Reis et al., 2011).

Os registros de morcegos utilizando cavernas como abrigo foram complementados com informações oriundas de 32 publicações: Ruschi (1952); Trajano (1985); Trajano (1987); Trajano & Gnaspini (1991); Trajano & Moreira (1991); Campanhã & Fowler (1993); Pinto-da-Rocha (1995); Siqueira (1995); Bredt & Júnior (1996); Esbérard et al. (1997); Trajano & Gimenez (1998); Bredt et al. (1999); Gregorin & Mendes (1999); Esberárd et al. (2001); Pinheiro et al. (2001); Pinto-da-Rocha & Sessegolo (2001); Pinto-da-Rocha et al. (2001); Sessegolo et al. (2001); Silva-da-Rocha et al. (2001); Silva et al. (2003); Esbérard et al. (2005); Aguiar et al. (2006); Coelho (2006); Faria et al. (2006); Arnone & Passos (2007); Arnone (2008); Sbragia & Cardoso (2008); Silva et al. (2009); Portela (2010); e Chaves et al. (2012).

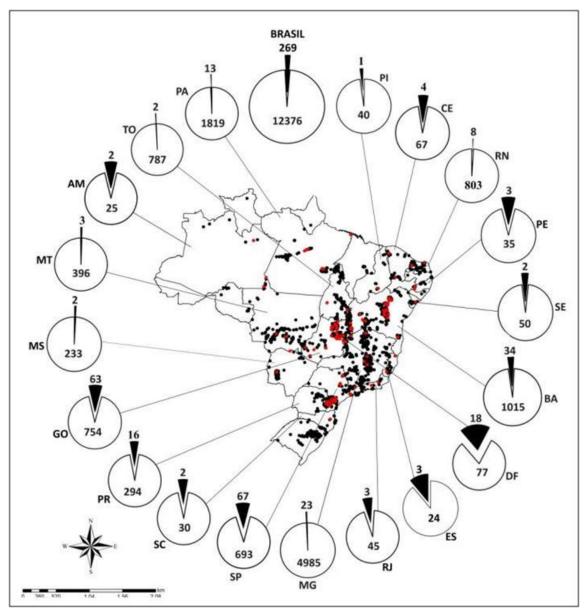
A classificação taxonômica segue Simmons (2005), com três exceções: *Artibeus planirostris* não é sinônimo de *A. jamaicensis* (Lim et al., 2004; Barques & Diaz, 2009); *Pteronotus davyi* não tem ocorrência registrada no Brasil (Willig & Mares, 1989; Bernard et al., 2011; Reis et al., 2011); e *Natalus macrourus* é sinônimo sênior de *N. espiritosantensis*, como sugerido por Garbino & Tejedor (2012).

A partir da compilação das informações (presente estudo e disponíveis em literatura), duas listas foram elaboradas, uma das cavernas que contém dados sobre morcegos e outra das espécies registradas por estes estudos.

A lista das cavernas inventariadas apresenta o nome, as coordenadas geográficas, o município e a unidade federativa, segundo o cadastro do CECAV (2014) e o bioma ao qual se insere. A riqueza de espécies de morcegos foi utilizada para classificar as

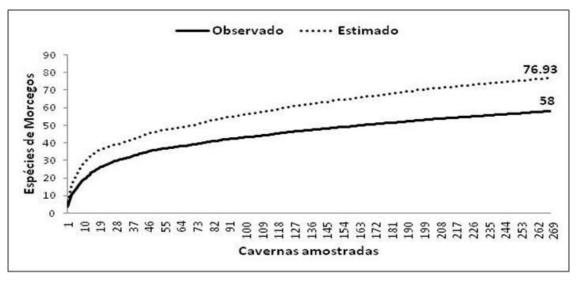
cavernas em: baixa riqueza (de 0-3 espécies), média riqueza (de 4-6 espécies), alta riqueza (de 7-9 espécies) e elevada riqueza (acima de 9 espécies).

A lista de morcegos cavernícolas foi elaborada considerando as espécies amostradas nos inventários. Apresenta o número de cavernas em que a espécie foi amostrada (observada/capturada), o bioma, o grau de ameaça segundo a lista de espécies ameaçadas (IUCN, 2014; MACHADO et al., 2008), e a classificação da espécie. Considerou-se morcegos cavernícolas apenas as espécies observadas durante o período diurno no interior de cavernas ou as capturadas rotineiramente utilizando tais abrigos. Assim, para a classificação das espécies foram utilizados os critérios propostos por Arita (1993), modificados de quatro para três categorias: (i) Essencialmente Cavernícola - espécies que se abrigam majoritariamente em caverna; (ii) Cavernícola Oportunista - espécies que usam cavernas de forma oportuna, mas rotineiramente utilizam outro tipo de abrigo; e (iii) Não Cavernícolas – espécies não registradas em cavernas e as que tem preferência por outros abrigos (incluindo espécies amostradas em apenas uma caverna).


Para avaliar o número de espécies de morcegos associadas às cavernas brasileiras, utilizamos o método Mao Tau que oferece a curva de acumulação das espécies observadas (COLWELL, 2009) e o estimador não paramétrico Jackknife 1, um estimador de primeira ordem que emprega o número de espécies que ocorre em apenas uma amostra. Esta análise foi realizada utilizando-se o *software* EstimateS 9.1.0 (COLWELL, 2013). A riqueza de morcegos registrada em cada caverna foi considerada uma amostra, totalizando 269 pontos amostrais. Apesar da diferença de esforço amostral empregado em cada uma das cavernas, as análises foram feitas sem ponderações.

A relação de similaridade na riqueza de morcegos cavernícolas entre os biomas ou entre as unidades federativas do Brasil foi analisada por meio de Escalonamento Multidimensional Não-Métrico (NMDS), utilizando o *software* Past ver. 2.17c (HAMMER et al., 2001) e calculado pelo índice de distância de Jaccard que estima a diversidade em termos de espécies presentes e ausentes no sistema, constituindo-se desta forma numa medida de similaridade qualitativa (MAGURRAN, 1988). A NMDS é analisada por meio de uma função de *Stress*, apresentando valores entre 0 e 1, e quando representa perfeitamente os dados analisados o *Stress* é zero (MAGURRAN, 2004).

3 RESULTADOS


O presente inventário sobre a fauna de morcegos cavernícolas, somado a outros já realizados em cavernas no Brasil, totaliza 269 cavernas com inventário sobre morcegos (Figura 2), distribuídas em 19 unidades federativas (entre parênteses consta o número de cavernas estudadas): AM (2), BA (34), CE (4), DF (18), ES (3), GO (63), MG (23), MS (2), MT (3), PA (13), PE (3), PI (1), PR (16), RJ (3), RN (8), SC (2), SE (2), SP (67) e TO (2). Estas cavernas abrangem os biomas: Cerrado (110 cavernas); Mata Atlântica (100); Caatinga (42); e Amazônia (17), conforme Apêndice A.

Com relação à diversidade de morcegos cavernícolas, tem-se que, das 269 cavernas analisadas, 57% apresentaram baixa riqueza, 23% média, 13% alta e 7% elevada riqueza. A Gruta Alambari de Baixo (SP) com 20 espécies é a mais rica, seguida da Gruta Judite (GO) com 18 espécies e, as cavernas Gruta Saúva (DF), Gruta Sal (DF) e Gruta do Córrego Seco (SP) com 15 espécies cada (Apêndice A).

Figura 2- Cavernas registradas no Brasil até fevereiro/2014, conforme a base de dados do Centro Nacional de Pesquisa e Conservação de Cavernas (CECAV, 2014). As realçadas em vermelho possuem estudos sobre morcegos. Os gráficos exibem a relação do número de cavernas registradas no CECAV (branco) e o número de cavernas com estudos sobre a quiropterofauna (preto), no País e em cada unidade federativa.

Das 178 espécies de morcegos ocorrentes no Brasil, 58 (33%) já foram registradas em cavernas no País. Contudo, 16 destas são consideradas não cavernícolas e apenas 13 como essencialmente cavernícolas, sendo a grande maioria (29 espécies) cavernícolas oportunistas (Tabela 1). O estimador de riqueza *Jackknife* 1 indicou que aproximadamente 77 espécies de morcegos podem ser encontradas em cavernas no Brasil (Figura 3).

Figura 3- Curva de acumulação das espécies de morcegos cavernícolas observadas (Mao Tau) e estimadas (*Jackknife* 1) para 269 cavernas.

O inventário realizado no presente estudo (58 cavernas) registrou no total 32 espécies, representando mais de 55% das espécies já registradas considerando as informações disponibilizadas em literatura (Tabela 1). Estes inventários contribuem com seis espécies ainda não documentadas utilizando cavernas como abrigo: Lonchophylla bokermanni (Gruta do Observador em Diamantina-MG), Phyllostomus elongatus (Gruta Alagada em Dianópolis-TO), Molossus cf. pretiosus (PEA-380 em São Félix do Coribe-BA), Nyctinomops laticaudatus (Gruta do Morro Chico Caboclo em Lagoa da Confusão-TO), Nyctinomops macrotis (PEA-380 São Félix do Coribe-BA) e Noctilio leporinus (Toca dos Ossos em Ourolândia-BA). A Gruta Cachoeira do Queimado em Unaí-MG apresentou a maior riqueza, alcançando 11 espécies (Apêndice A).

Foram coletados como material testemunho 30 espécimes representando 18 espécies amostradas por meio de captura, que se encontram depositados na Coleção de Mamíferos da Universidade Federal de Lavras (CMUFLA): Artibeus planirostris (nº. 1557); Carollia perspicillata (nº. 1558, 1563, 1571 e 1573); Desmodus rotundus (nº. 1559 e 1560); Diphylla ecaudata (nº. 1572, 1576 e 1578); Furipterus horrens (nº. 1574); Glyphonycteris behnii (nº. 902); Glossophaga soricina (nº. 899, 1566 e 1569); Lonchophylla dekeyseri (nº. 903); Lonchophylla bokermanni (nº. 1004); Lonchophylla mordax (nº. 1561 e 1562); Micronycteris minuta (nº. 901); Micronycteris megalotis (nº. 1564); Molossus cf. pretiosus (nº. 900); Natalus macrourus (nº. 1575); Nyctinomops macrotis (nº. 898); Peropteryx macrotis (nº. 1568); Phyllostomus hastatus (nº. 1565 e 1567); Tonatia bidens (nº. 1570, 1577 e 1579).

As análises de NMDS referentes às comunidades de morcegos cavernícolas não demonstraram a formação de agrupamentos distintos tanto entre os quatro biomas, quanto às 19 unidades federativas do Brasil (Figura 4).

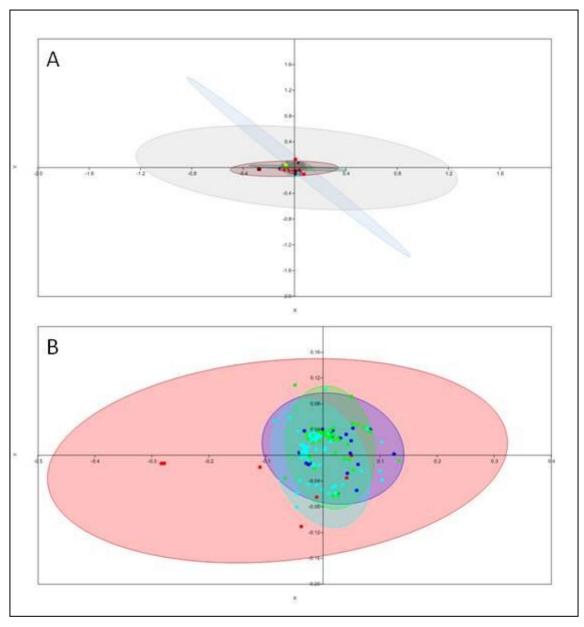
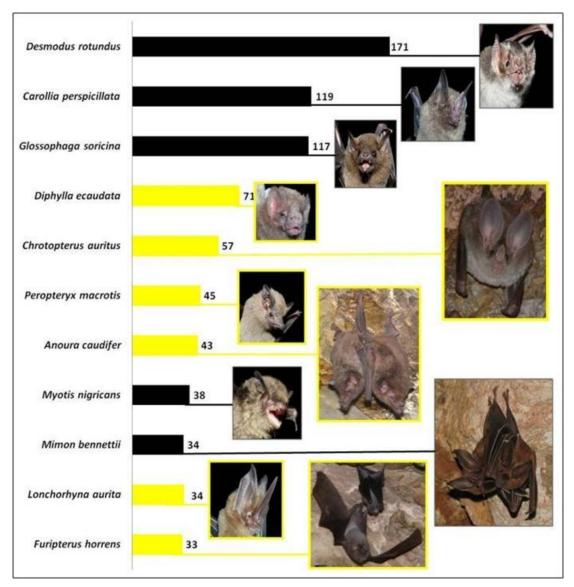



Figura 4- Escalonamento Multidimensional Não-Métrico (NMDS) baseado no índice de similaridade de Jaccard de 269 cavernas inventariadas para quiropterofauna. A) Compara a riqueza de morcegos registrada em cada caverna com relação à unidade federativa em que está inserida: AM (rosa), BA (azulclaro), CE (cinza-claro), DF (azul-escuro), ES (amarelo-claro), GO (amarelo-escuro), MG (grafite), MS (marrom), MT (vermelho-claro), PA (vermelho-escuro), PE (verde-escuro), PI (roxo), PR (verde-claro), RJ (cinza-azulado), RN (laranja-claro), SC (laranja-escuro), SP (cinza-escuro) e TO (preto), Stress: 0,3834. B) Compara a riqueza de morcegos registrada em cada caverna com relação ao bioma em que está inserida: Amazônia (vermelho), Caatinga (azul-escuro), Cerrado (verde) e Mata Atlântica (azul-claro), Stress: 0,3791.

Segundo a Lista Vermelha das Espécies Ameaçadas, da *International Union for Conservation of Nature* (IUCN, 2014), a maioria das espécies de morcegos registradas em cavernas no Brasil (80%) encontra-se na categoria de pouca preocupação; somente *Lonchophylla dekeyseri* e *Natalus macrourus* (identificada como *Natalus espiritosantensis* na publicação original – DÁVALOS & TEJEDOR, 2008) são listadas como quase ameaçadas. No Livro Vermelho da Fauna Brasileira Ameaçada de Extinção (MACHADO et al., 2008) também constam duas espécies de morcegos cavernícolas, a *L. dekeyseri* se repetindo e, ao invés da *N. macrourus*, possui a *L. bokermanni*.

As espécies mais registradas (Tabela 1) foram *Desmodus rotundus* relatada em 171 cavernas, seguida por *Carollia perspicillata* presente em 119 e *Glossophaga soricina* em 117 cavernas (Figura 5).

Figura 5- Espécies de morcegos mais amostrados em cavernas no Brasil (N=269), classificados em essencialmente cavernícolas (amarelo) ou cavernícolas oportunistas (preto), esboçando o número de cavernas em que foram registrados.

Tabela 1- Espécies de morcegos registradas em cavernas no Brasil, indicando o número de cavernas em que foi registrada (entre parênteses) por biomas, a classificação (Cla) segundo o uso de caverna como: essencialmente cavernícola (EC); cavernícola oportunista (CO); e não cavernícola (NC), o status de conservação da IUCN (2014) e as referências.

Nº	Taxa	Bioma (Qtdade. caverna)	Cla	IUCN	Referências
	Emballonuridae Gervais, 1855				
1	Peropteryx kappleri Peters, 1867	Am(8), Ca(1), Ma(3)	EC	LC	6, 10, 14, 24, 32
2	Peropteryx macrotis (Wagner, 1843)	Ca(9), Ce(28), Ma(8)	EC	LC	1, 2, 7, 8, 9, 10, 11, 12, 15, 22, 23, 26, 27, 28, 29, 31, 32, PE
3	Saccopteryx bilineata (Temminck, 1838)	Ma(1)	NC	LC	24
4	Saccopteryx leptura (Scherber, 1774)	Ma(1)	NC	LC	32
	Phyllostomidae Gray, 1825				
5	Desmodus rotundus (E. Geoffroy, 1810)	Am(6), Ca(16), Ce(80), Ma(69)	CO	LC	1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, PE
6	Diphylla ecaudata Spix, 1823	Am(4), Ca(14), Ce(38), Ma(15)	EC	LC	1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, PE
7	Diaemus youngi (Jentink, 1893)	Ce(1), Ma(1)	CO	LC	2, 23, 29
8	Anoura caudifer (E. Geoffroy, 1818)	Am(1), Ca(3), Ce(13), Ma(26)	EC	LC	1, 2, 5, 6, 11, 13, 16, 17, 22, 24, 25, 26, 27, 32, PE
9	Anoura geoffroyi Gray, 1838	Ce(14), Ma(9)	EC	LC	1, 8, 11, 13, 22, 25, 26, 27, 29, 32, PE
10	Choeroniscus minor (Peters, 1868)	Ce(1)	NC	LC	9
11	Glossophaga soricina (Pallas, 1766)	Am(3), Ca(14), Ce(78), Ma(22)	CO	LC	2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, PE
12	Lionycteris spurrelli Thomas, 1913	Ca(2)	EC	LC	10, 12
13	Lonchophylla bokermanni Sazima, Vizotto & Taddei, 1978	Ma(1)	NC	DD*	PE
14	Lonchophylla dekeyseri Taddei, Vizotto & Sazima, 1983	Ce(24)	EC	NT*	11, 13, 16, 22, 28, 29, PE
15	Lonchophylla mordax Thomas, 1903	Ca(2), Ma(1)	CO	LC	12, 32, PE
16	Chrotopterus auritus (Peters, 1856)	Ca(4), Ce(22), Ma(31)	EC	LC	1, 2, 5, 6, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, PE
17	Glyphonycteris behnii (Peters, 1896)	Ce(2)	CO	DD	29, PE
18	Glyphonycteris sylvestris Thomas, 1896	Ma(2)	CO	LC	2, 26
19	Lonchorhina aurita Tomes, 1863	Am(1), Ca(2), Ce(18), Ma(13)	EC	LC	4, 8, 11, 13, 22, 28, 29, 30, 31, 32, PE
20	Lophostoma brasiliense (Peters, 1866)	Ma(1)	NC	LC	32

Nº	Taxa	Bioma (Qtdade. caverna)	Cla	IUCN	Referências
21	Macrophyllum macrophyllum (Schinz, 1821)	Ma(3)	CO	LC	24, 26, 32
22	Micronycteris megalotis (Gray, 1842)	Ca(2), Ce(14), Ma(11)	CO	LC	1, 2, 5, 6, 8, 11, 22, 26, 28, 29, 30, PE
23	Micronycteris minuta (Gervais, 1856)	Ca(1), Ce(5), Ma(3)	CO	LC	10, 11, 13, 16, 22, 24, 29
24	Mimon bennettii (Gray, 1838)	Ce(23), Ma (11)	CO	LC	5, 6, 8, 11, 13, 22, 25, 28, 32, PE
25	Phylloderma stenops Peters, 1865	Ca(1), Ce(2), Ma(1)	CO	LC	1, 10, 11, 13, 22
26	Phyllostomus discolor Wagner, 1843	Ca(2), Ce(2)	CO	LC	19, 27, PE
27	Phyllostomus elongatus (E. Geoffroy, 1810)	Ce(1)	CO	LC	PE
28	Phyllostomus hastatus (Pallas, 1767)	Am(1), Ca(6), Ce(16), Ma (1)	CO	LC	2, 6, 7, 8, 11, 14, 19, 22, 23, 27, 29, 30, 32, PE
29	Tonatia bidens (Spix, 1823)	Ca(4), Ce(1), Ma(8)	CO	DD	1, 2, 6, 10, 24, 26, 27, 31, PE
30	Trachops cirrhosus (Spix, 1823)	Am(2), Ca(1), Ce(10), Ma(6)	CO	LC	1, 2, 6, 8, 9, 11, 13, 22, 24, 26, 29, 32, PE
31	Carollia perspicillata (Linnaeus, 1758)	Am(3), Ca(16), Ce(61), Ma(39)	CO	LC	1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 15, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 27, 32, PE
32	Artibeus cinereus (Gervais, 1855)	Ce(2)	CO	LC	29
33	Artibeus fimbriatus Gray, 1838	Ma(10)	CO	LC	26
34	Artibeus lituratus (Olfers, 1818)	Ca(2), Ce(2), Ma(17)	CO	LC	1, 2, 24, 26, 27, 29, PE
35	Artibeus glaucus Thomas, 1893	Ma(1)	NC	LC	26
36	Artibeus obscurus (Schinz, 1821)	Ma(3)	CO	LC	24, 26
37	Artibeus planirostris (Spix, 1823)	Ca(10), Ce(7), Ma(1)	CO	LC	12, 13, 26, 27, 29, 30, 31, PE
38	Chiroderma doriae Thomas, 1891	Ma(1)	NC	LC	26
39	Platyrrhinus lineatus (E. Geoffroy, 1810)	Ca(3), Ce(17), Ma(4)	CO	LC	10, 11, 12, 22, 23, 29, 32, PE
40	Pygoderma bilabiatum (Wagner, 1843)	Ma(2)	CO	LC	26
41	Sturnira lilium (E. Geoffroy, 1810)	Ce(1), Ma(7)	CO	LC	1, 2, 6, 23, 25, 26, 27
42	Sturnira tildae de La Torre, 1959	Ma(3)	CO	LC	1, 29
	Mormoopidae Saussure, 1860				
43	Pteronotus gymnonotus Natterer, 1843	Am(2), Ca(5), Ce(6)	EC	LC	8, 22, 23, 27, 30, PE
44	Pteronotus parnellii (Gray, 1843)	Am(4), Ca(2), Ce(13)	EC	LC	4, 6, 8, 11, 13, 22, 27, 29, 30, PE
	Noctilionidae Gray 1821				
45	Noctilio leporinus (Linnaeus, 1758)	Ca(1)	CO	LC	PE
	Furipteridae Gray, 1866				
46	Furipterus horrens (F. Cuvier, 1828)	Am(3), Ca(10), Ce(11), Ma(9)	EC	LC	1, 2, 6, 8, 11, 19, 22, 26, 27, PE

Nº	Taxa	Bioma (Qtdade. caverna)	Cla	IUCN	Referências
	Natalidae Gray, 1866				
47	Natalus macrourus (Gervais, 1856)	Am(3), Ca(6), Ce(9), Ma(7)	EC	NT	1, 2, 4, 9, 10, 13, 19, 22, 24, 26, 27, 31, 32, PE
	Molossidae Gervais, 1855				
48	Molossus molossus (Pallas, 1766)	Am(1)	NC	LC	6
49	Molossus rufus É. Geoffroy, 1805	Ma(1)	NC	LC	32
50	Molossus cf. pretiosus Miller, 1902	Ce(1)	NC	LC	PE
51	Molossops temminckii (Burmeister, 1854)	Ce(1)	NC	LC	8
52	Nyctinomops laticaudatus (E. Geoffroy, 1805)	Ce(1)	NC	LC	PE
53	Nyctinomops macrotis (Gray, 1840)	Ce(1)	NC	LC	PE
	Vespertilionidae Gray, 1821				
54	Eptesicus brasiliensis (Desmarest, 1819)	Ce(1)	NC	LC	11
55	Lasiurus ega (Gervais, 1855)	Ma(1)	NC	LC	26
56	Myotis riparius Handley, 1960	Ma(4)	CO	LC	26
57	Myotis nigricans (Schinz, 1821)	Ce(17), Ma(21)	CO	LC	1, 2, 3, 6, 9, 11, 13, 16, 17, 22, 24, 25, 27, 29, 32, PE
	Thyropteridae Spix, 1823				
58	Thyroptera tricolor Spix, 1823	Ma(1)	NC	LC	24

Biomas: Amazônia (Am); Caatinga (Ca); Cerrado (Ce); e Mata Atlântica (Ma)

IUCN (status de ameaça): Pouca preocupação (LC); Quase ameaçado (NT); Deficiência de dados (DD);

Referências: (1) Trajano, 1985; (2) Trajano, 1987; (3) Trajano & Gnaspini, 1991; (4) Trajano & Moreira, 1991; (5) Campanhã & Fowler, 1993; (6) Pinto-da-Rocha, 1995; (7) Siqueira, 1995; (8) Bredt & Júnior, 1996; (9) Esbérard et al., 1997; (10) Trajano & Gimenez, 1998; (11) Bredt et al., 1999; (12) Gregorin & Mendes, 1999; (13) Esberárd et al., 2001; (14) Pinheiro et al., 2001; (15) Pinto-da-Rocha & Sessegolo, 2001; (16) Pinto-da-Rocha et al., 2001; (17) Sessegolo et al., 2001; (18) Silva-da-Rocha et al., 2001; (19) Silva et al. 2001; (20) Arnone & Passos, 2003; (21) Zeppelini et al., 2003; (22) Esbérard et al., 2005; (23) Aguiar et al., 2006; (24) Faria et al., 2006; (25) Arnone & Passos, 2007; (26) Arnone, 2008; (27) Sbragia & Cardoso, 2008; (28) Silva et al., 2009; (29) Portela, 2010; (30) Chaves et al., 2012; (31) Coelho, 2006; (32) Ruschi, 1952 e (PE) Presente Estudo.

^{* -} Listada como vulnerável no Livro Vermelho da Fauna Brasileira Ameaçada de Extinção (MACHADO, 2008)

4 DISCUSSÃO

Cavernas são fundamentais para a preservação dos morcegos porque representam refúgios permanentes contra predadores e intempéries (KUNZ, 1982; TRAJANO, 1995; ARITA, 1996; TEJEDOR et al., 2004). Desta forma, a preservação dos morcegos essencialmente cavernícolas está vinculada a preservação das cavernas. O conhecimento relacionado a quiropterofauna cavernícolas, compreende uma ferramenta importante para a tomada de decisões nos processos de licenciamento ambiental e seleção de áreas prioritárias para conservação da biodiversidade nos ecossistemas subterrâneos, devendo ser melhor explorado.

Contudo, a simples informação de que uma determinada espécie de morcego foi encontrada em uma caverna não é suficiente para classificá-la como cavernícola. Das 58 espécies de morcegos registradas em cavernas no Brasil, apenas 42 já foram observadas utilizando cavernas como abrigo diurno e/ou são rotineiramente capturadas neste tipo de abrigo, podendo então ser consideradas cavernícolas. As espécies não cavernícolas são classificadas como acidentais, segundo Schiner-Racovitã (SCHINER, 1854; RACOVITÃ, 2006), que são organismos encontrados por acaso em cavernas e não porque eles normalmente vivem lá (ROMERO, 2009), termo este introduzido por Schiner (1854) que classificou os organismos de cavernas de acordo com seu grau de dependência com relação ao meio ambiente subterrâneo.

Considerando a classificação ecológica/evolutiva de Schiner-Racovitã (SCHINER, 1854; RACOVITÃ, 2006), algumas espécies de morcegos (Romero, 2009) são conceituadas como troglóxenos (cavernícolas ocasionais), pois, são organismos sem características troglomórficas (especialização decorrente do isolamento no ambiente subterrâneo), mas que passam parte significativa de suas vidas em cavernas.

Entretanto, existem várias terminologias que classificam ecologicamente essas categorias (CULVER & PIPAN, 2009). De acordo com o esquema mais recente de classificação de organismos cavernícolas (SKET, 2008), os morcegos podem ser conceituados como: (*i*) subtroglófilos (residentes obrigatórios ou facultativos de habitats subterrâneos, mas associados a habitats de superfície em alguma parte de seu ciclo de vida), equivalente ao conceito de troglófilo de Schiner-Racovitã (SCHINER, 1854; RACOVITÃ, 2006) ou ao de troglóxeno de Barr (1968); e também como (*ii*) troglóxenos (espécies que aparecem esporadicamente em habitats subterrâneos), equivalente ao conceito de Barr (1968) para acidental e desta mesma categoria (troglóxeno) em Schiner-Racovitã.

Outra categoria importante, a qual algumas espécies de morcegos se enquadram, é a de 'troglóxeno obrigatório' estabelecida por meio de ditames legais (MMA, 2009) e conceituada como 'troglóxeno que precisa necessariamente utilizar a cavidade para completar seu ciclo de vida' (Anexo I, Tabela II, Instrução Normativa MMA n° 02, de 20 de agosto de 2009). Este e outros 44 atributos norteiam os órgãos ambientais, nos processos de licenciamento ambiental, durante a determinação do grau de relevância das cavernas. Tendo em vista que, a presença de troglóxeno obrigatório em uma caverna representa importância acentuada, sob enfoque local e regional, esta é classificada como de 'Alta Relevância'.

A metodologia adotada neste estudo, contudo, considerou a classificação de Arita (1993), principalmente por ter sido elaborada exclusivamente para ordem Chiroptera. Mas, a proposta original foi modificada reduzindo-se o número de categorias para simplificar a determinação de enquadramento de cada espécie. Nesta perspectiva, para se classificar uma espécie de morcego com relação ao uso que ela faz de cavernas, é necessário conhecer as características específicas de cada espécie com relação às estratégias de utilização dos abrigos,

sendo importante realizar observações diretas no interior das cavernas, durante o período diurno, para se esclarecer quais espécies realmente são residentes, ou seja, as que utilizam cavernas como abrigos diurnos.

A utilização de cavernas é diferente entre as espécies de morcegos. Enquanto as cavernícolas oportunistas são menos dependentes, para as espécies essencialmente cavernícolas, esses refúgios naturais são essenciais para preservação de suas populações. Nesta perspectiva, espécies indicadas como essencialmente cavernícolas, necessariamente podem ser classificadas como troglóxenos obrigatórios. Contudo, algumas das espécies cavernícolas oportunistas também se enquadram nesta categoria, ao menos em um contexto regional. Um exemplo é a *Artibeus planirostris* que, apesar de utilizar principalmente folhagens como abrigo diurno em boa parte de sua distribuição geográfica, na caverna Toca do Morrinho (Campo Formoso-BA) – inserida no domínio do bioma Caatinga e localizada no centro do polígono da seca –, existe uma colônia que a utiliza como abrigo diurno a mais de 15 anos, chegando a agrupar cerca de 1.000 indivíduos durante o período de reprodução; a caverna se transforma em uma maternidade e, neste caso, os membros desta metapopulação são considerados troglóxenos obrigatórios.

No entanto, existem espécies que mesmo sendo amostradas em cavernas não devem ser consideradas cavernícolas. Como exemplo, podemos citar *Thyroptera tricolor*, que apesar de já relatada em caverna (Faria et al., 2006) foi considerada não cavernícola devido às suas características morfológicas não serem favoráveis para utilização destes abrigos. Os representantes da família Thyropteridae são especializados em utilizar abrigos com superfícies lisas (como folhas de bananeira) e, ao longo da evolução, perderam a habilidade para usar superfícies ásperas (VONHOF et al., 2004). A subfamília Stenodermatidae é outro exemplo que deve ser analisado caso a caso, pois, apesar de ter nove espécies consideradas cavernícolas oportunistas estes morcegos costumam se abrigar na folhagem das árvores, sendo que algumas possuem listras brancas na face e no dorso que às auxiliam na camuflagem (FLEMING, 2003).

Na análise de similaridade (NMDS) todas as cavernas ficaram dentro do intervalo de segurança (95%), demonstrando que a composição de espécies entre elas é similar, tanto para os biomas, quanto para as unidades federativas. No entanto, este resultado pode ser reflexo dos diferentes métodos e esforços amostrais. Não obstante, os morcegos mais amostrados foram os cavernícolas oportunistas, *Desmodus rotundus, Carollia perspicillata* e *Glossophaga soricina*, espécies com ampla distribuição, grande população e tolerância às modificações antrópicas. Essas três espécies representam cerca de 40% dos registros realizados nas 269 cavernas alvo deste estudo, sugerindo que a composição de espécies entre as cavernas brasileiras encontra-se diretamente relacionada com a facilidade que os morcegos tem para explorar uma diversidade de abrigos.

Ressalta-se que o inventário apresentado das 58 cavernas apresenta as primeiras informações para os estados de Piauí, Sergipe e Tocantins, bem como um acréscimo no número de cavernas pesquisadas nos estados da Bahia (17 cavernas acrescentadas em um total de 34) e Minas Gerais (19 cavernas acrescentadas em um total de 23), deixando esses dois Estados com maior número de cavernas estudas quando comparados com o Distrito Federal, que era o terceiro da lista. No entanto, a maioria dos estudos permanece concentrada nos estados de São Paulo (67 cavernas) e Goiás (63 cavernas).

Considerando o total de espécies amostradas nas 269 cavernas, cerca de 33% das espécies brasileiras têm registro em cavernas, porcentagem inferior à registrada para o México (45%) por Arita (1993). O estudo de Arita (1993) abrangeu 215 cavernas distribuídas pelo território mexicano, das quais 80% apresentaram no máximo três espécies de morcegos e 10%

mais de cinco espécies. Em comparação com este trabalho, as cavernas brasileiras apresentam uma maior riqueza: somente 54% das cavernas possuem até três espécies e em 29% foram amostradas mais de cinco espécies.

Geralmente, cavernas maiores possuem maiores riqueza e abundância de morcegos (Luo et al., 2013). Entretanto, as duas maiores cavernas do Brasil, Toca da Boa Vista (107 km) e Toca da Barriguda (33 km), ambas em Campo Formoso-BA, apresentaram média (4 espécies) e baixa (3 espécies) riqueza, respectivamente, indicando que outros fatores além do tamanho da caverna, devem estar relacionados à diversidade de morcegos em regiões tropicais. Possivelmente, a vegetação ao redor da caverna deve ser mais importante do que seu tamanho, ou mesmo as condições microclimáticas (temperatura e umidade), porém, as diferenças metodológicas de amostragem devem ser levadas em consideração.

O desconhecimento com relação à utilização de áreas cársticas por morcegos brasileiros é enorme e deve ser sanado para subsidiar ações que objetivam um desenvolvimento de forma sustentável. Apenas em cerca de 2% das cavernas cadastradas foram encontrados inventários sobre os morcegos e, embora, mais de 12 mil cavernas já estejam cadastradas no Brasil (CECAV, 2014), este número deve representar somente cerca de 5 a 10% do potencial do País (PILÓ & AULER, 2011), aumentando ainda mais as lacunas de informação que abrangem boa parte do País.

Desta forma, a realização de novos levantamentos da quiropterofauna em cavernas (novas ou mesmo já estudadas), certamente resultará em incremento na lista de morcegos cavernícolas apresentada neste estudo. O resultado apontado pelo estimador de riqueza *Jackkinife* 1, indicando que cerca de 77 espécies de morcegos podem ser registradas em cavernas brasileira, reforça esta afirmação. Outra questão que assinala essa subestimativa é a existência de espécies cavernícolas registradas para o país, mas que não foram amostradas nas 269 cavernas analisadas, como a *Pteronotus personatus* (WAGNER, 1843; DÁVALOS et al., 2008), que se encaixa na categoria de essencialmente cavernícola, como as demais espécies deste gênero.

Cavidades naturais subterrâneas que compreendam abrigo ou parte importante do habitat de espécies ameaçadas de extinção, como as *Lonchophylla dekeyseri* e *L. bokermanni*, são classificadas de máxima relevância (MMA, 2009). Este é o caso da Gruta Morro Chico Caboclo, em Lagoa da Confusão-TO, que é abrigo diurno de uma colônia de *L. dekeyseri* que contêm mais de 200 indivíduos, demonstrando a importância do conhecimento sobre a quiropterofauna cavernícola para a preservação das cavernas.

Não obstante, *Natalus macrourus* (citada como *N. espiritosantensis*), embora possua ampla distribuição, por ser dependente de cavernas, encontra-se listada como 'Quase Ameaçada' (DÁVALOS & TEJEDOR, 2008). Desta forma, levando em conta o princípio da precaução, as demais espécies "Essencialmente Cavernícolas" deveriam ser contidas nesta categoria de 'Quase Ameaçada', tendo em vista que também dependem das cavernas para sua preservação.

A proteção deste rico e desconhecido patrimônio está atrelado à proteção não apenas do espaço físico das cavernas, mas também de sua área de influência, inicialmente estabelecida em um raio de 250 metros da projeção em superfície de suas galerias, a qual compreende os recursos ambientais, superficiais e subterrâneos, e dos quais dependam sua integridade física ou seu equilíbrio ecológico (IBAMA, 1990).

Os morcegos são consideráveis agentes de importação de matéria orgânica e umidade ao ecossistema subterrâneo, principalmente em cavernas secas, sustentando e estruturando a comunidade de invertebrados (FERREIRA et al., 2007). Assim, quando o principal agente de

importação de energia são os morcegos, sua constância na caverna está diretamente relacionada ao equilíbrio do ecossistema subterrâneo.

Neste contexto, para se determinar a área de influência de uma caverna com tal característica, a melhor abordagem deve analisar a área de vida das espécies de Chiroptera ocorrentes na caverna e considerar a maior, localizando e garantindo a proteção das áreas de forrageamento para manter os morcegos e seus serviços de aporte energético. A radiotelemetria pode facilitar a localização e determinação desta área (KALKO et al., 1996; MACDONALD et al., 2000).

5 CONSIDERAÇÕES FINAIS

Legislação & Conservação

- O Patrimonio Espeleológico Brasileiro, considerado "Bem da União" pela Constituição Federal (BRASIL, 1988), encontra-se legalmente protegido por normas e diretrizes que orientam seu uso e preservação (BRASIL, 1937; 1990; 2008; CONAMA, 2004).
- O Decreto nº 99.556/1990 é um dos principais e sua antiga redação, de carater estritamente conservacionista (Medeiros & Galvão, 2011), não permitia quaisquer impactos negativos à este patrimônio. Porém, na prática, essa proteção não era devidamente garantida. O Decreto nº 6.640/2008 alterou esta normatização, instituindo quatro graus de relevância (baixa, média, alta e máxima) e possibilitando impactos irreversíveis em cavernas de 'Baixa Relevância', bem como, nas de 'Média e Alta Relevância' mediante compensação ambiental. Somente as cavernas consideradas de "Máxima Relevância" são integralmente intangíveis. Esta modificação não foi bem aceita por parte dos espeleólogos e pesquisadores afins, sucitando na Ação Direta de Inconstitucionalidade ADI nº 4218/DF (BRASIL, 2009) que foi julgada inadmissível em Decissão Monocrática (BRASIL, 2011).

O fato é que o número de cavernas conhecidas no Brasil aumentou significativamente após as modificações na legislação espeleológica (BRASIL, 2008), passando de 4 mil (Auler et al., 2001) para mais de 12 mil cavernas cadastradas (CECAV, 2014). Este incremento está diretamente relacionado com as exigências de estudos espeleológicos para localização, construção, instalação, ampliação, modificação e operação de empreendimentos potencialmente poluidores ou degradadores de cavernas (BRASIL, 1990).

Segundo Oliveira-Galvão (2014), na criação da Base CECAV as informações sobre as cavernas eram provenientes de bases especializadas, como o CNC/SBE e o CODEX/Redespeleo, bem como de estudos e pesquisas. Porém, com o passar dos anos, ocorreu significativo aumento no número de cavernas cadastradas , devido aos estudos espeleológicos dos processos de licenciamento ambiental. A autora cita que cerca de 40% das cavernas cadastradas na Base CECAV são provenientes destes estudos ambientais. Esta ampliação de conhecimento também se estende à fauna silvestre (incluindo os morcegos), e subsidia a classificação do grau de relevância das cavernas.

Todavia, ainda é cedo para se definir até que ponto este acréscimo de informação configura uma melhor (ou pior) proteção ao Patrimônio Espeleológico nacional. A conservação das áreas cársticas e dos ecosistemas subterrâneos devem ser resultado de esforço de cooperação entre pesquisadores (universidades), consultores ambientais (empresas privadas) e interlocutores governamentais (poder legislativo e área ambiental), promovendo de maneira conjunta a investigação e a gestão deste delicado Bem da União, que são as cavernas

AGRADECIMENTOS

Somos gratos a Dona Rosália e aos professores da Rede Pública de Ensino de Laje dos Negros, município de Campo Formoso-BA, pelo auxilio logístico; Tarcísio de Freitas Milagres pelo auxílio em campo; e a Zanderluce Gomes Luiz pelo auxilio nas pranchas e valiosas críticas ao manuscrito. A empresa Panorama Ambiental, na pessoa de Edvard Magalhães, por disponibilizar informações de campo. Ao Espeleo Grupo de Brasília (EGB) pela base espeleológica. O financiamento foi fornecido pela família Guimarães e por bolsa de estudos concedida pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior para Guimarães, M.M. Ao Sistema de Autorização e Informação em Biodiversidade (SISBIO) pela autorização para finalidade científica n° 36113-1.

REFERÊNCIAS

- AGUIAR, L. M. S.; CAMARGO, W. R.; PORTELLA, A. S. Ocorrência de morcego vampiro de asas brancas, *Diaemus youngi* (Mammalia, Chiroptera), no Cerrado do Distrito Federal, Brasil. *Revista Brasileira de Zoologia*, Curitiba, v. 23, n. 3, p.893-896, 2006.
- ARITA, H. T. Conservation biology of the caves bats of México. *Journal of Mammalogy*, v. 74, n. 3, p. 693-702, 1993.
- ARITA, H.T. The conservation of cave-roosting bats in Yucatan, México. *Biological Conservation*, v. 76, n. 2, p. 177-185, 1996.
- ARNONE, I. S. *Estudo da comunidade de morcegos na área cárstica do Alto Ribeira SP: Uma comparação com 1980.* 2008. 116 f. Dissertação (Mestre em Ciências, Área Zoologia) Instituto de Biociências, Universidade de São Paulo, São Paulo, 2008.
- ARNONE, I. S.; PASSOS, F. C. Estrutura de comunidade da quiropterofauna (Mammalia, Chiroptera) do Parque Estadual de Campinhos, Paraná, Brasil. *Revista Brasileira de Zoologia*, Curitiba, v. 24, n. 3, p. 573-581, 2007.
- ARNONE, I. S.; PASSOS, F. C. Levantamento da fauna de morcegos (Chiroptera, Mammalia) do Parque Natural Municipal das Grutas de Botuverá, Botuverá/SC. In: CONGRESSO BRASILEIRO DE ESPELEOLOGIA. 27., 2003, Januária. *Anais...* Campinas: SBE, 2003. p. 108-114.
- AULER, A.; RUBBIOLI, E.; BRANDI, R. *As grandes cavernas do Brasil*. Belo Horizonte: Grupo Bambuí de Pesquisas Espeleológicas, 2001. 227p.
- BARQUEZ, R.; DIAZ, M. *Artibeus planirostris*. *The IUCN Red List of Threatened Species*. Version 2014.2. 2009. Disponível em: http://www.iucnredlist.org/details/2139/0>. Acesso em: 25 set. 2014.
- BARR, T. C. Cave Ecology and the evolution of troglobites. In: DOBZHANSKY, T.; HECHT, M.K.; STEERE, W.C. (ed.). *Evolutionary Biology*. New York: Plenun Press, 1968. cap. 2, p. 35-102.
- BERNARD, E.; AGUIAR, L. M. S.; BRITO, D.; CRUZ-NETO, A. P.; GREGORIN, R.; MACHADO, R. B.; OPREA, M.; PAGLIA, A. P.; TAVARES, V. C. Uma análise de horizontes sobre a conservação de morcegos no Brasil. In: FREITAS, T. R. O.; VIEIRA, E. M. *Mamíferos do Brasil*: Genética, Sistemática, Ecologia e Conservação. vol II. (Ed:.). Rio de Janeiro: Sociedade Brasileira de Mastozoologia, 2012. p. 19-35.
- BERNARD, E.; AGUIAR, L. M. S.; MACHADO, R. B. Discovering the Brasilian bat fauna: a task for two centuries? *Mammal Review*, v. 41, n. 1, p. 23-39, 2011.

- BRASIL. Supremo *Tribunal Federal*. Ação Direta de Inconstitucionalidade ADI nº 4218/DF. Pedido de medida cautelar em impugnação aos artigos 1º e 2º do Decreto nº 6.640/2008. 2009. Coordenadoria de Processamento Inicial, 10/03/2009. Disponível em:
- <a href="http://redir.stf.jus.br/estfvisualizadorpub/jsp/consultarprocessoeletronico/ConsultarProcessoeletronico/C
- BRASIL. Supremo *Tribunal Federal*. Decisão Monocrática. Processo: Ação Direta de Inconstitucionalidade ADI nº 4218/DF. 2011. Disponível em:
- http://redir.stf.jus.br/estfvisualizadorpub/jsp/consultarprocessoeletronico/ConsultarProcessoeletronico/ConsultarProcessoeletronico/ConsultarProcessoeletronico.jsf?seqobjetoincidente=2666340. Acesso em: 7 fev. 2014.
- BRASIL. Decreto nº 6.640, de 07 de novembro de 2008. 1990a. Dá nova redação aos arts. 1º, 2º, 3º, 4º e 5º e acrescenta os arts. 5-A e 5-B ao Decreto nº 99.556, de 1º de outubro de 1990, que dispõe sobre a proteção das cavidades naturais subterrâneas existentes no território nacional. *Diário Oficial da União*, Brasília, DF, 10 nov. 2008. Seção 1. Disponível em: http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Decreto/D6640.htm#art2, Acesso em: 12 fev. 2014.
- BRASIL. Decreto nº 99.556, de 1º de outubro de 1990. Dispõe sobre a proteção das cavidades naturais subterrâneas existentes no território nacional, e dá outras providências. *Diário Oficial da União*, Brasília, DF, 2 out. 1990b. Seção 1. Disponível em:
- http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/D99556.htm. Acesso em: 12 fev. de 2014.
- BRASIL. Constituição (1988). *Constituição da República Federativa do Brasil*. Brasília, DF: Senado Federal, 1988.
- BRASIL. Decreto-Lei n° 25, de 30 de novembro de 1937. Organiza a proteção do patrimônio histórico e artístico nacional. *Diário Oficial da União*, Brasília, DF, 6 dez. 1937. Seção 1. Disponível em: http://www.planalto.gov.br/ccivil_03/decreto-lei/del0025.htm. Acesso em: 12 fev. de 2014.
- BREDT, A.; JUNIOR, J. C. *Diagnóstico da raiva na região do futuro reservatório da UHE Serra da Mesa Goiás*. Instituto de Saúde do Distrito Federal e Instituto Geabrasil, 1996. 52pp.
- BREDT, A.; MAGALHÃES, E. D. Os morcegos da APA de Cafuringa. In: NETTO P. B., MECENAS V. V., CARDOSO, E. S. (Ed.). *APA de Cafuringa*: a última fronteira natural do DF. Brasília-DF: Secretaria de Meio Ambiente e Recursos Hídricos (SEMARH), 2006. cap. 5, p. 259-266.
- BREDT, A.; UIEDA, W.; MAGALHÃES, E. D. Morcegos cavernícolas da região do Distrito Federal, Centro-Oeste do Brasil (Mammalia, Chiroptera). *Revista Brasileira de Zoologia*, v. 16, n. 3, p. 731-770, 1999.
- CAMPANHÃ, R. A.; FOWLER, H. G. Roosting assemblages of bats in arenitic caves in remnant fragments of Atlantic Forest in Southeastern Brazil. *Biotropica*, v. 25, n. 3, p. 362-365, 1993.
- CECAV. Centro Nacional de Pesquisa e Conservação de Cavernas / Instituto Chico Mendes de Biodiversidade e Conservação (CECAV/ICMBIO). *Base de Dados Geoespacializados das Cavernas do Brasil*, situação de 28/02/2014. 2014. Disponível em:
- http://www.icmbio.gov.br/cecav/downloads/mapas.html. Acesso em: 28 fev. 2014.
- CHAVES, P. M. R.; FRANCO, P. A. D.; PEREIRA, V. C. R. Diversidade de morcegos (Mammalia, Chiroptera) em gruta de formação calcária localizada na Fazenda Cantinho,

- município de Formosa Goiás (GO). *Revista Meio Ambiente e Sustentabilidade*, v. 1, n. 1, p. 8-28, 2012.
- COELHO, D.C. *Levantamento da fauna de morcegos no Carste de Felipe Guerra, RN*. Ministério de Meio Ambiente, Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis, Diretoria de Ecossistemas, Centro Nacional de Estudo, Proteção e Manejo de Cavernas, Produto 07, Contrato nº 2004/000337, Termo de Referência nº 109181. 2006.
- COLWELL, R. K. *Biodiversity: concepts, patterns, and measurement*. The Princeton guide to ecology, 2009. p. 257-263.
- COLWELL, R. K.; EstimateS 9.1.0. Department of Ecology & Evolutionary Biology, University of Connectiect, Storrs. 2013. Disponível em: http://viceroy.eeb.uconn.edu/estimates. Acesso em: 6 dez. 2013.
- CONAMA. Conselho Nacional do Meio Ambiente. Resolução CONAMA nº 347, de 10 de setembro de 2004. *Diário Oficial da União*, Brasília, DF, 13 set. 2004. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=452. Acesso em: 14 fev. 2014.
- CULVER, D. C.; PIPAN, T. *The Biology of Caves and Other Subterranean Habitats*. New York: Oxford University Press, 2009. 254p.
- DÁVALOS, L.; MOLINARI, J.; MANTILLA, H.; MEDINA, C.; PINEDA, J.; RODRIGUEZ, B. *Pteronotus personatus*. In: The IUCN Red List of Threatened Species. Version 2013.2. 2008. Disponível em: <www.iucnredlist.org>. Acesso em: 18 mai. 2014.
- DÁVALOS, L.; TEJEDOR, A. *Natalus espiritosantensis*. In: The IUCN Red List of Threatened Species. Version 2014.2. 2008. Disponível em: <www.iucnredlist.org>. Acesso em: 09 set. 2014.
- DESSEN, E. M. B.; ESTON, V. R.; SILVA, M. S.; BECK, M. T. T.; TRAJANO, E. Levantamento preliminar da fauna de cavernas de algumas regiões do Brasil. *Ciência e Cultura*, v. 32, n. 6, p. 714-725, 1980.
- DIAS, D.; PERACCHI, A. L. Quirópteros da Reserva Biológica do Tinguá, estado do Rio de Janeiro, sudeste do Brasil (Mammalian: Chiroptera). *Revista Brasileira de Zoologia*, Curitiba, PR, v. 25, n. 2, 333-369, 2008.
- DIAS, D.; PERACCHI, A. L.; SILVA, S. S. P. Quirópteros do Parque Estadual da Pedra Branca, Rio de Janeiro, Brasil (Mammalian, Chiroptera). *Revista Brasileira de Zoologia*, Curitiba, PR. v. 19, n. 2, p. 113-140. 2002.
- ESBÉRARD, C. E. L.; MARTINS, L. F. S.; CRUZ, R. C.; COSTA, R. C.; NUNES, M. S.; LUZ, E. M.; CHAGAS, A. S. Aspectos da biologia de *Lonchorhina aurita* no Estado do Rio de Janeiro (Mammalia: Chiroptera: Phyllostomidae). *Revista Bioikos*, Campinas, v. 21, n. 1-2, p. 46-49, 1997.
- ESBÉRARD, C. E. L.; MOTTA, J. A. O.; CALVO, E. M.; FERREIRA, V. M.; CARVALHO, J. C.; CARVALHO, C. C.; SOUZA, C. R. P.; PIRES, E. A.; ROSA, G. M. V.; REIS, J. S.; ARAÚJO, J. N.; QUECE, K. E. Morcegos de Mambaí e arredores, Goiás, Brasil. In: SPELEO BRASIL 2001. 26.,2001. Brasília. *Anais.*.. Campinas: SBE, 2001, p.361-364.
- ESBÉRARD, C. E. L.; MOTTA, J. A.; PERIGO, C. Morcegos cavernícolas da APA Nascentes do Rio Vermelho, Goiás. *Revista Brasileira de Zoociências*, Juiz de Fora, v. 7, n. 2, p. 311-325, 2005.
- FARIA, D.; SOARES-SANTOS, B.; SAMPAIO, E. Bats from the Atlantic rainforest of southern Bahia, Brazil. *Biota Neotropica*, v. 6, n. 2, p. 1-13, 2006.

- FERREIRA, R. L.; PROUS, X.; MARTINS, R. P. Struture of bat guano communities in a dry Brazilian cave. *Tropical Zoology*, Firenze, v. 20, n. 1, p. 55-74, 2007.
- FLEMING, T. H. *A bat man in the tropics*: chasing El Duend. (Organisms and environments), 2003, 311p.
- GARBINO, G. S. T.; TEJEDOR, A. *Natalus macrourus* (Gervais, 1856) (Chiroptera: Natalidae) is a senior synonym os Natalus espiritosantensis (Ruschi, 1951). *Mammalia*, v. 77, n. 2, p. 237-240, 2012.
- GARDNER, A. L. *Mammals of South American*. Volume 1 Marsupials, Xenarthrans, Shrews and Bats. Chicago: University of Chicago Press, 2008. 669p.
- GREGORIN, R.; MENDES, L. F. Sobre quirópteros (Emballonuridae, Phyllostomidae, Natalidae) de duas cavernas da Chapada Diamantina, Bahia, Brasil. Iheringia, *Série Zoologia*, Porto Alegre, v. 86, p. 121-124, 1999.
- GREGORIN, R.; TADDEI, V.A. Chave artificial para identificação de molossideos brasileiros. (Mammalia: chiroptera). Mastozoo. *Neotropical*, v. 9, n. 1, p. 13-32, 2002.
- HAMMER, Ø.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontologia Electronica*, n. 4, p. 9, 2001. Disponível em: http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Acesso em: 20 dez. 2013.
- IBAMA. Instituto Brasileiro do Meio Ambiente e Recursos Renováveis. Portaria n° 887, de 15 de junho de 1990. Dispõe sobre o uso das cavidades subterrâneas, entre outros. 1990. *Diário Oficial da União*, Brasília, DF, 20 jun. 1990. Seção 1. Disponível em: http://www.icmbio.gov.br/cecav/downloads/legislacao.html. Acesso em: 12 fev. 2014.
- IBGE. Instituto Brasileiro de Geografia e Estatística. *Sinopse do Censo 2010*: Área Territórial Brasileira. 2010. Disponível em: http://www.ibge.gov.br/home/geociencias, Acesso em: 18 jun. 2014.
- IUCN. International Union for Conservation of Nature. *The IUCN Red List of Threatened Species*. Version 2014.2. 2014. Disponível em: http://www.iucnredlist.org. Acesso em: 27 set. 2014.
- KALKO, E. K. V.; HANDLEY, C. O.; HANDLEY, D. Organisation, diversity and long term dynamics of a neotropical bat community. In: CODY, M.; SMALLWOOD, J. (Ed.) *Longterm studies of vertebrate communities*. Los Angeles: Academic Press, 1996. p. 503–553.
- KUNZ, T. H. Roosting ecology of bats. In: KUNZ, T.H. (Ed.). *Ecology of bats*. New York: Plenum Press, 1982. cap. 1, p. 1-55.
- LIM, B. K.; ENGSTROM, M. D.; LEE-JR, T. E.; PATTON, J. C.; BICKHAM, J. W. Molecular differentiation of large species of fruit-eating bats (Artibeus) and phylogenetic relationships based on the cytochrome b gene. *Acta Chiropterologica*, v. 6, n. 1, p. 1-12, 2004.
- LUO, J.; JIANG, T.; LU, G.; WANG, L.; WANG, J.; FENG, J. *Bat conservation in China*: should protection of subterranean habitats be a priority? Oryx, 2013. v.47, n. 4, p. 526-531. Doi: 10.1017/S0030605311001505.
- MACDONALD, D. W.; STEWART, P. D.; STOPKA, P.; YAMAGUCHI, N. Measuring the Dynamics of Mammalian Societies: An Ecologist's Guide to Ethological Methods. In: BOITANI, L.; FULLER, T. K. (Ed.). *Research techniques in animal ecology*: controversies and consequences. Columbia University Press, 2000. p. 332-380.

- MACHADO, A. B. M.; DRUMMOND, G. M.; PAGLIA, A. P. (Ed.). *Livro vermelho da fauna brasileira ameaçada de extinção*. 1. ed. Brasília, DF: MMA; Belo Horizonte, MG: Fundação Biodiversita, 2008. 907p.
- MAGURRAN, A. E. *Ecological diversity and its measurement*. Princeton: Princeton University Press, 1988. 192p.
- MAGURRAN, A. E. *Measuring biological diversity*. Oxford: Blackwell Publishing Company, 2004. 256p.
- MEDEIROS, R. C. S.; GALVÃO, A. L. Histórico e Contexto Legal. In: CECAV. *Curso de Espeleologia e Licenciamento Ambiental III*. Brasília, DF: Instituto Chico Mendes de Conservação da Biodiversidade, 2011. p. 153-167.
- MITTERMEIER, R. A.; GIL, P. R.; HOFFMAN, M.; PILGRIM, J.; BROOKS, T. *Hotspots Revisited*: Earth's biologically richest and most endangered terrestrial ecoregions. Chicago: The University of Chicago Press, 2005. 392p.
- MMA. Ministério do Meio Ambiente. Instrução Normativa nº 2, de 20 de agosto de 2009. Estabelece metodologia para classificação do grau de relevância das cavidades naturais subterrâneas (regulamenta o art. 5º do Decreto nº 6.640/2008). *Diário Oficial da União*, Brasília, DF, 1 ago. 2009. Disponível em:
- http://www.icmbio.gov.br/cecav/images/download/IN%2002_MMA_Comentada.pdf. Acesso em: 12 fev. 2014.
- NOGUEIRA, M. R.; LIMA, I. P.; MORATELLI, R.; TAVARES, V. C.; GREGORIN, R.; PESACCHI, A. L. Checklist of Brazilian bats, with comments on original records. *Check List*, v. 10, n. 4, p. 808-821, 2014.
- OLIVEIRA-GALVÃO, A. L. C. A base de dados geoespacializados do Centro Nacional de Pesquisa e Conservação de Cavernas CECAV. *Revista Brasileira de Espeleologia RBEsp.* v. 1, n. 4, p. 52-62, 2014.
- PACHECO, S. M.; SODRÉ, M.; GAMA, A. R.; BREDT, A.; SANCHE, E. M. C.; MARQUES, R. V.; GUIMARÃES, M. M.; BIANCONI, G. Morcegos Urbanos: Status do Conhecimento e Plano de Ação para a Conservação no Brasil. *Chiroptera Neotropical*, v.16, n. 1, p. 629-647, 2010.
- PALMEIRIM, J. M.; RODRIGUES, L. *Plano Nacional de Conservação dos Morcegos Cavernícolas. Estudos de Biologia e Conservação da Natureza*, Lisboa: SNPRCN, 1992. n. 8, 166p.
- PILÓ, L. B.; AULER, A. Introdução à Espeleologia. In: CECAV. *Curso de Espeleologia e Licenciamento Ambiental III*. Brasília, DF: Instituto Chico Mendes de Conservação da Biodiversidade, 2011. p. 7-23.
- PINHEIRO, R. V. L.; MAURITT, C. W.; HENRIQUES, A. L.; SILVEIRA, L. T.; MAREIRA, J. R. A.; LOPES, P. R. C.; SILVEIRA, O. T. PAIVA, R. S.; LINS, A. L. F. A.; VERÍSSIMO, C. U. V.; ARCANJO, S. H. S.; KERN, D. C.; KRAUSE, E. A.; FILHO, M. F. L.; ROCHA, J. B.; SANTOS, W. As grutas bauxíticas da Serra do Piraí-PA. *Boletim do Museu Paraense Emílio Goeldi*, Série Ciências da Terra, n. 13, p. 65-97, 2001.
- PINTO-DA-ROCHA, R. Sinopse da fauna cavernícola do Brasil. *Papéis Avulsos de Zoologia* (São Paulo), v. 39, n. 6, p. 61-173, 1995.
- PINTO-DA-ROCHA, R.; SESSEGOLO, G. C. Estudo da fauna de Gruta de São Miguel I, Serra da Bodoquena (MS), como subsídio para o plano de manejo. In: ROCHA, L. F. S.; OLIVEIRA, SESS, G. C. (Org.). *Conservando Cavernas*. Quinze anos de espeleologia GEEP-Açungi, Curitiba, 2001. cap. 8, p. 125-135.

- PORTELLA, A. S. *Morcegos cavernícolas e relação parasita-hospedeiro com moscas estreblídeas em cinco cavernas do Distrito Federal*. 2010. 66 f. Dissertação (Mestrado em Ecologia) Instituto de Ciências Biológica, Universidade Federal de Brasília, Brasília, 2010.
- RACOVITÃ, E. G. Essay on biospeological problems (CULVER, D. C.; MOLDOVAN, O. T., transl.). In: MOLDOVAN, O. T.; RACOVITZA, E. G. (Ed.). *Essay on Biospeological Problems*: French, English, Romanian. Romania: Casa Cărți de Știință. Cluj-Napoca, 2006. p. 127-183.
- REIS, N. R.; PERACCHI, A. L.; PEDRO, W. A.; LIMA, I. P. *Mamíferos do Brasil*. Londrina, PR, 2011, 439p.
- ______. *Morcegos do Brasil*. Londrina, PR, 2007, 253p.
- ROMERO, A. *Cave Biology*: Life in Darkness. New York: Cambridge University Press, 2009. 291p.
- RUSCHI, A. Os morcegos das grutas do Limoeiro em Castelo, Monte Líbano em Cachoeiro do Itapemirim e de Itaúnas, em Morro d'Anta, em Conceição da Barra. Grutas de Inverno, Verão e Acidentais. Coabitação. O banho. Morcegário e criação em cativeiro. Pesquisas sobre Corpusculos de Negri. *Boletim do Museu de Biologia Prof. Mello-Leitão*, n. 9A, p. 1-88, 1952.
- SBRAGIA, I. A.; CARDOSO, A. Quiropterofauna (Mammalia: Chiroptera) cavernícola da Chapada Diamantina, Bahia, Brasil. *Chiroptera Neotropical*, v. 14, n. 1, p. 360-365, 2008.
- SCHINER, J. R. Fauna der Adelsberger, Luegger, and Magdalenen Grotte. In: SCHMIDL, A. (Ed.). *Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas*. Wie-Australian: Braunmüller, 1854. p. 231-272.
- SESSEGOLO, G. C.; THEULEN, V.; SILVA-DA-ROCHA, L. F. PINTO-DA-ROCHA, R. Conservação e manejo da Gruta da Lancinha, Rio Branco do Sul/PR. In: ROCHA, L. F. S.; OLIVEIRA, SESSEGOLO, G. C. (Org.). *Conservando Cavernas*. Quinze anos de espeleologia GEEP-Açungi, Curitiba. 2001, cap. 11, p. 175-198.
- SESSEGOLO, G. C.; ROCHA, L. F. S. da; OLIVEIRA, K. L. A Fauna das Grutas de Botuverá, Botuverá SC. In: ROCHA, L. F. S.; OLIVEIRA, SESSEGOLO, G. C. (Org.). A Fauna das Grutas de Botuverá, Botuverá SC. Curitiba: GEEP-Açungui, 2001. v. 1. p. 137-156.
- SILVA, P J. A.; CARVALHO, A. R.; MOTTA, J. A. O. Fauna de morcegos (Mammalia, Chiroptera) em cavernas no bioma Cerrado na região de Indiara (Goiás). *Revista Brasileira de Zoociências*, v. 11, n. 3, p. 209-217, 2009.
- SILVA, S. S. P.; GUEDES, P. G.; PERACCHI, A. L. Levantamento preliminar dos morcegos do Parque Nacional de Ubajara (Mammalia, Chiroptera), Ceará, Brasil. *Revista Brasileira de Zoologia*, v. 18, n.1, p. 139-144, 2001.
- SILVA-DA-ROCHA, L. F.; SESSEGOLO, G. C.; PINTO-DA-ROCHA, R. Análise dos impactos ambientais do Gasoduto Brasil/Bolívia na Gruta da Ermida, Almirante Tamandaré/PR. In: ROCHA, L. F. S.; OLIVEIRA, SESSEGOLO, G. C. (Org.). *Conservando Cavernas*. Quinze anos de espeleologia GEEP-Açungi, Curitiba, 2001. cap. 6, p. 91-104.
- SIMMONS, N. B. Ordem Chiroptera. In: WILSON, D. E.; REEDER, D. M. (Ed.) *Mammals Species of the World*: A Taxonomic and Geografic Reference. Baltimore: Johns Hopkins University Press, 2005. p. 312-529.
- SIQUEIRA, I. G. *Levantamento de Quirópteros em uma caverna no município de Niquelândia-Goiás*. 1995. 22 f. Monografia (Ciências Biológica) Departamento de Ciências Biológicas e Biomédicas, Universidade Católica de Goiás, Goiânia, GO. 1995.

- SKET, B. Can we agree on an ecological classification of subterranean animals? *Journal of Natural History*, v. 42, p. 1549-1563, 2008.
- SUTHERLAND, W. J.; AVELING, R.; BROOKS, T. M.; CLOUT, M.; DICKS, L. V.; FELLMAN, L.; FLEISHMAN, E.; GIBBONS, D. W.; KEIM, B.; LICKORISH, F.; MONK, K. A.; MORTIMER, D.; PECK, L. S.; PRETTY, J.; ROCKSTROM, J.; RODRÍGUEZ, J. P.; SMITH, R. K.; SPALDING, M. D.; TONNEIJCK, F. H.; WATKINSON, A. R. A horizon scan of global conservation issues for 2014. *Trendes in Ecology & Evolution*. v. 28, n. 1, p. 15-22. 2014.
- SUTHERLAND, W. J.; WOODROOF, H. J. The need for environmental horizon scanning. *Trends in Ecology & Evolution*. v. 24, n. 10, p. 523-527, 2009.
- TAVARES, V. C.; GREGORIN, R.; PERACCHI, A. L. A diversidade de morcegos no Brasil: Lista Atualizada com comentários sobre distribuição e taxonomia. In: PACHECO, S. M.; MARQUES, V.; ESBÉRARD, C. E. L. (ed) Morcegos do Brasil: biologia, sistemática, ecologia e conservação. *Armazém Digital*, p. 223-229, 2008.
- TEJEDO, A.; SILVA-TABOADA, G.; HERNÁNDEZ, D. R. Discovery of extant *Natalus mojor* (Chiroptera: Natalidae) in Cuba. *Mammalian Biology*, v. 69, n. 3, p. 153-162, 2004.
- TRAJANO, E. Ecologia de populações de morcegos cavernícolas em uma região cárstica do sudeste do Brasil. *Revista Brasileira de Zoologia*, v. 2, n. 5, p. 255-320, 1985.
- TRAJANO, E. Fauna cavernícola brasileira: composição e caracterização preliminar. *Revista Brasileira de Zoologia*, v. 3, n. 8, p.: 533-561, 1987.
- TRAJANO, E. Protecting caves for bats or bats for the caves? *Chiroptera Neotropical*, v. 1, n. 2, p. 19-22, 1995.
- TRAJANO, E.; GIMENEZ, E. A. *Bat community in a cave from eastern Brazil, including a new Record of Lionycteris* (Phyllostomidae, Glossophaginae). Lisse: Studies on Neotropical Fauna and Environment, 1988. v. 33, n.2, p. 69-75.
- TRAJANO, E.; GNASPINI, P. N. Composição da fauna cavernícola brasileira, com uma análise da distribuição dos táxons. *Revista Brasileira de Zoologia*, v. 7, n. 3, p. 383–407, 1991.
- TRAJANO, E.; MOREIRA, J. R. A. Estudo da fauna de cavernas da província espeleológica arenítica Altamira-Itaituba, Pará. *Revista Brasileira de Biologia*, v. 51, n. 1, p. 13-29, 1991.
- UIEDA, W.; SAZIMA, I.; STORTI-FILHO, A. Aspectos da biologia do morcego *Furipterus horrens*. *Revista Brasileira de Biologia*, v. 40, n. 1, p. 59- 66, 1980.
- VIZOTTO, L. D.; TADDEI, V. A. *Chave para determinação de Quirópteros Brasileiros*. Francal, São Jose do Rio Preto. 1973.
- VONHOF, M. J.; WHITEHEAD, H.; FENTON, M. B. Analysis of Spix's disc-winged bat association patterns and roosting home ranges reveal a novel social structure among bats. Animal Behaviour, v. 68, n. 3, p. 507-521, 2004.
- WILLIG, M. R.; MARES, M. A. Mammals of Caatinga: an updated list and summary of recent research. Revista Brasileira de Biologia, v. 49, n. 2, p. 361-367, 1989.
- ZEPPELINI-FILHO, D.; RIBEIRO, A. C.; RIBEIRO, G. C.; FRACASSO, M. P. A.; PAVANI, M. M.; OLIVEIRA, O. M. P.; OLIVEIRA, S. A.; MARQUES, A. C. Faunistic survey of sandstone caves from Altinópolis Region, São Paulo State, Brazil. Papéis Avulsos de Zoologia, v. 5, n. 43, p. 93-99, 2003.

APÊNDICE A- Lista de cavernas com estudos sobre morcegos, apresentando a coordenada (graus decimais, *Datum* WGS84), cadastro na Sociedade Brasileira de Espeleologia (SBE), município e estado segundo BRASIL (2014), seguido do bioma, riqueza de morcegos (Baixa entre 1-3 espécies; Média com 4-6 espécies; Alta com 7-9; e Elevada com mais de 9 espécies) e as referências.

Nº	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
1	Toca do Morrinho	-10.209096	-40.918145	BA-103	Campo Formoso	BA	CA	Al (9)	PE (a, b, c)
2	Gruta da Grota	-10.216233	-40.972873	BA-352	Campo Formoso	BA	CA	Al (7)	PE (a, c)
3	Toca do Gonçalo	-10.510992	-40.894659	BA-342	Campo Formoso	BA	CA	Al (8)	PE (a, b, c)
4	Gruta Tiquara	-10.451036	-40.537526	BA-004	Campo Formoso	BA	CA	Me (5)	PE (a, c)
5	Gruta do Cemitério	-10.179739	-40.871160	BA-502	Campo Formoso	BA	CA	Me (4)	PE (a, c)
6	Toca da Boa Vista	-10.160195	-40.860843	BA-082	Campo Formoso	BA	CA	Me (4)	PE (c)
7	Toca da Barriguda	-10.140795	-40.852242	BA-250	Campo Formoso	BA	CA	Ba (3)	PE (c)
8	PEA-377	-13.417769	-44.195178	NÃO	São Felix do Coribe	BA	Ce	Ba (1)	PE (a, c)
9	PEA-378	-13.418315	-44.199046	NÃO	São Felix do Coribe	BA	Ce	Ba (2)	PE (a, c)
10	PEA-379	-13.420896	-44.203351	NÃO	São Felix do Coribe	BA	Ce	Ba (3)	PE (a, c)
11	PEA-380	-13.420662	-44.203601	NÃO	São Felix do Coribe	BA	Ce	Me (6)	PE (a, c)
12	PEA-381	-13.418268	-44.195583	NÃO	São Felix do Coribe	BA	Ce	Ba (2)	PE (a, c)
13	PEA-383	-13.420632	-44.202604	NÃO	São Felix do Coribe	BA	Ce	Ba (3)	PE (a, c)
14	PEA-341	-13.191370	-44.613881	NÃO	Santa Maria da Vitória	BA	Ce	Me (4)	PE (a, c)
15	PEA-342	-13.259813	-44.569372	NÃO	Santa Maria da Vitória	BA	Ce	Me (5)	PE (a, c)
16	PEA-343	-13.260616	-44.568198	NÃO	Santa Maria da Vitória	BA	Ce	Me (5)	PE (a, c)
17	PEA-382	-13.418588	-44.202352	NÃO	Santa Maria da Vitória	BA	Ce	Ba (1)	PE (a, c)
18	Gruta Brejinho	-7.230723	-39.996902	NÃO	Araripe	CE	Ca	Ba (2)	PE (c)
19	Gruta da Bibiana	-13.517139	-48.117125	GO-044	Cavalcante	GO	Ce	Al (8)	PE (a, c)
20	Gruta Rib. dos Porcos	-14.518237	-46.142492	NÃO	Damianópolis	GO	Ce	Ba (2)	PE (c)
21	Lapa do Fuzil	-15.475846	-49.010234	NÃO	Goianésia	GO	Ce	Ba (2)	PE (a, c)
22	Abismo Casa Pedra Aparada	-17.141144	-52.663160	GO-598	Mineiros	GO	Ce	Al (7)	PE (a, c)
23	Caverna da Grande Fenda	-17.123823	-52.656186	NÃO	Mineiros	GO	Ce	Ba (1)	PE (a, c)
24	Fenda Pedra Aparada	-17.116249	-52.644203	NÃO	Mineiros	GO	Ce	Ba (2)	PE (a, c)
25	Gruta do Assentamento	-17.437500	-51.463132	NÃO	Perrolândia	GO	Ce	Me (5)	PE (a, c)
26	Gruta do Diogo	-18.279095	-52.024600	NÃO	Serranópolis	GO	Ce	Al (7)	PE (a, b, c)
27	Gruta Salobo	-15.487972	-46.221677	NÃO	Arinos	MG	Ce	Ba (1)	PE (c)
28	Gruta Rio Preto	-16.216208	-47.252001	MG-1189	Cabeceira Grande	MG	Ce	Al (7)	PE (a, b, c)
29	Gruta Encosta	-16.213800	-47.288702	MG-1187	Cabeceira Grande	MG	Ce	Ba (2)	PE (a, b, c)

Nº	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
30	Gruta PEA-404	-16.214503	-47.274856	NÃO	Cabeceira Grande	MG	Ce	Ba (3)	PE (a, b, c)
31	Gruta do Observador	-18.364094	-43.958210	NÃO	Diamantina	MG	Ma	Ba (1)	PE (a, c)
32	Gruta dos Peixes	-18.374183	-43.953118	NÃO	Diamantina	MG	Ma	Ba (1)	PE (a, c)
33	Gruta Olhos d'Água	-15.117120	-44.167069	NÃO	Itacarambi	MG	CA	Ba (1)	PE (c)
34	Gruta da Lapinha	-19.561595	-43.959199	MG-219	Lagoa Santa	MG	Ce	Me (4)	PE (a, b, c)
35	Gruta da Macumba	-19.561147	-43.959822	NÃO	Lagoa Santa	MG	Ce	Me (5)	PE (a, b, c)
36	Lapa das Pacas	-19.560758	-43.966558	MG-297	Lagoa Santa	MG	Ce	Me (6)	PE (a, b, c)
37	Lapa do Sumidouro	-19.542088	-43.941463	MG-387	Lagoa Santa	MG	Ce	Ba (3)	PE (a, b, c)
38	Gruta do Mirante	-18.360678	-43.961995	NÃO	Monjolos	MG	Ma	Ba (3)	PE (a, c)
39	Gt. Fenda da Cachoeira	-18.359666	-43.959673	NÃO	Monjolos	MG	Ma	Ba (0)	PE (a, c)
40	Gruta Fenda II	-18.368416	-43.963127	NÃO	Monjolos	MG	Ma	Ba (1)	PE (a, c)
41	Gruta Mina D'Água	-18.367761	-43.963008	NÃO	Monjolos	MG	Ma	Ba (3)	PE (a, c)
12	Gruta Nova 1	-18.366385	-43.977610	NÃO	Monjolos	MG	MA	Ba (2)	PE (a, c)
13	Gruta do Porco Espinho	-16.212203	-47.269207	MG-1188	Unaí	MG	Ce	Me (5)	PE (a, b, c)
14	Gruta Cachoeira Queimado	-16.217004	-47.323905	MG-463	Unaí	MG	Ce	El (11)	PE (a, b, c)
15	Gruta Ressurgência Malhadinha	-16.212234	-47.265565	MG-1191	Unaí	MG	Ce	Me (5)	PE (a, c)
46	Gruta Sumidouro	-17.612910	-54.835138	NÃO	Sonora	MS	Ce	Al (7)	PE (b)
17	Abrigo dos Morcegos	-8.559583	-58.535306	NÃO	Cotriguaçú	MT	Am	Ba (2)	PE (c)
18	Gruta Aroe Jari	-15.613833	-55.499272	NÃO	Cuiabá	MT	Am	Ba (1)	PE (c)
19	Gruta Gato	-8.853573	-37.255525	NÃO	Buíque	PE	Ca	Ba (3)	PE (c)
50	Gruta Meu Rei	-8.580199	-37.267204	NÃO	Buíque	PE	Ca	Ba (2)	PE (c)
51	Gruta do Inferno	-8.781859	-42.483352	NÃO	Coronel José Dias	PI	Ca	Ba (1)	PE (c)
52	Gruta do Urubu	-5.572946	-37.652542	NÃO	Felipe Guerra	RN	Ca	Ba (1)	PE (c)
53	Gruta Guano	-5.139540	-35.908600	NÃO	Pedra Grande	RN	Ca	Ba (1)	PE (c)
54	Gruta Pedra Branca	-10.777141	-37.145346	NÃO	Divina Pastora	SE	Ca	Ba (1)	PE (c)
55	Gruta Urubu	-10.706541	-37.117046	NÃO	Laranjeiras	SE	Ca	Ba (1)	PE (c)
56	Gruta Alagada	-11.874704	-46.768996	NÃO	Dianópolis	TO	Ce	Al (7)	PE (a, c)
57	Gruta Morro Chico Caboclo	-10.837500	-49.627600	NÃO	Lagoa da Confusão	TO	CE	Me (6)	PE (a, c)
58	Gruta Parna Juruena	-7.272404	-58.202193	NÃO	Juruena	AM	AM	Ba (2)	PE (c)
59	Toca do Urubu	-15.663579	-39.671692	NÃO	Potiguara	BA	Ma	Me (6)	24
60	Gruta Riachinho	-12.595145	-41.496180	BA-198	Palmeiras	BA	Ca	Ba (2)	27
61	Gruta dos Brejões I	-11.012137	-41.433677	BA-01	Morro do Chapéu	BA	Ca	Ba (2)	27

N°	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
62	Lapa Manoel Lopes	-12.454482	-44.970304	BA-06	São Desidério	BA	Ce	Ba (1)	6
63	Gruta Poço Encantado	-12.945100	-41.105200	BA-202	Itaete	BA	Ca	Al (9)	12
64	Gruta Boa Esperança	-11.920742	-41.107576	BA-205	Morro do Chapéu	BA	Ca	Ba (3)	27
65	Toca dos Ossos	-10.930442	-41.057562	BA-28	Ourolândia	BA	Ca	Al (9)	27, PE (c)
66	Lapa do Bode	-12.934377	-41.065257	BA-34	Itaete	BA	Ca	Me (4)	12
67	Toca da Onça	-11.888242	-41.656480	NÃO	Canarana	BA	Ca	Ba (1)	27
68	Abrigos do Morrão	-11.821242	-41.312877	NÃO	Morro do Chapéu	BA	Ca	Me (4)	27
69	Gruta Alto do Bonito	-12.038366	-41.433744	NÃO	Utinga	BA	Ca	Ba (2)	27
70	Abrigo da Vespa	-10.984028	-41.433744	NÃO	João Dourado	BA	Ca	Ba (2)	27
71	Gruta da Lapinha	-12.464400	-40.980900	BA-09	Iraquara	BA	Ca	Ba (1)	27
72	Abrigo das Lages	-10.978035	-41.463125	NÃO	Morro do Chapéu	BA	Ca	Ba (1)	27
73	Toca do Urubu	-10.984028	-41.433744	NÃO	Morro do Chapéu	BA	Ca	Ba (1)	27
74	Gruta da Fumaça	-12.332400	-41.596600	NÃO	Iraquara	BA	Ca	Me (4)	27
75	Gruta do Tamboril	-11.224903	-41.098788	BA-634	Morro do Chapéu	BA	Ca	Ba (2)	27
76	Caverna Ubajara	-3.853500	-40.928100	CE-01	Ubajara	CE	Ca	Me (5)	2, 19
77	Gruta do Tião	-3.797217	-40.873711	NÃO	Ubajara	CE	Ca	Ba (3)	19
78	Gruta Morcego Branco	-3.833273	-40.901249	CE-02	Ubajara	CE	Ca	Me (4)	2, 19
79	Gruta Saúva	-15.546900	-47.866900	DF-03	Sobradinho	DF	Ce	El (15)	11, 29
80	Gruta Fenda II	-15.511747	-48.166729	DF-16	Brazlândia	DF	Ce	Al (8)	11
81	Gruta Sal	-15.512947	-48.167329	DF-05	Brazlândia	DF	Ce	El (15)	11, 23, 29
82	Gruta Muralha	-15.503045	-48.167591	DF-06	Brazlândia	DF	Ce	Ba (2)	11
83	Gruta Volks Clube	-15.873458	-47.810306	DF-07	Paranoá	DF	Ce	Al (8)	11
84	Labirinto da Lama	-15.510447	-48.123729	DF-10	Brazlândia	DF	Ce	Me (5)	11
85	Gruta da Barriguda	-15.512647	-48.124329	DF-11	Brazlândia	DF	Ce	Al (8)	11
86	Gruta Dois Irmãos	-15.519847	-48.124629	DF-12	Brazlândia	DF	Ce	El (13)	11, 29
87	Gruta dos Morcegos	-15.576460	-47.879810	DF-13	Sobradinho	DF	Ce	Ba (3)	11
88	Gruta Moji	-15.560000	-47.822800	DF-14	Sobradinho	DF	Ce	Al (7)	11
89	Gruta Dança dos Vampiros	-15.561400	-47.756900	DF-17	Planaltina	DF	Ce	Al (8)	11
90	Gruta Água Rasa	-15.548100	-47.750300	DF-18	Planaltina	DF	Ce	Al (8)	11
91	Gruta Kipreste	-15.514437	-47.955598	DF-20	Sobradinho	DF	Ce	Ba (3)	11
92	Gruta Boca do Lobo	-15.507200	-47.788600	DF-23	Sobradinho	DF	Ce	Al (8)	11, 29
93	Gruta Falção	-15.899652	-48.251299	DF-26	Ceilândia	DF	Ce	Me (6)	11

Nº	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
94	Fenda do Barreiro	-15.898510	-48.252806	DF-27	Ceilândia	DF	Ce	Me (5)	11
95	Gruta Fazenda Cavas	-15.516675	-47.736917	NÃO	Sobradinho	DF	Ce	Al (9)	29
96	Toca Mata da Anta	-15.858019	-47.805709	DF-28	Paranoá	DF	Ce	Ba (3)	11
97	Gruta Chupé	-14.996845	-48.301829	NÃO	Niquelândia	GO	Ce	Ba (2)	8
98	Gruta Bora	-14.517757	-46.105571	GO-458	Mambai	GO	Ce	Me (4)	22
99	Lapa do Bento	-14.242941	-48.832131	NÃO	Niquelândia	GO	Ce	Me (5)	7
100	Gruta Mandacarú	-13.98	-48.42	NÃO	Campinaçú	GO	Ce	Ba (2)	8
101	Gruta Índio IV	-14.590717	-48.991488	GO-118	Barro Alto	GO	Ce	Me (4)	8
102	Gruta Babaçu	-14.009041	-48.292327	GO-214	Niquelândia	GO	Ce	Me (6)	8
103	Lapa do São Mateus III	-13.680556	-46.366666	GO-11	São Domingos	GO	Ce	Me (4)	6
104	Gruta das Orquídeas	-15.483747	-48.067128	GO-112	Padre Bernardo	GO	Ce	Me (4)	11
105	Gruta Titara	-14.181241	-48.946031	GO-122	Uruaçú	GO	Ce	Ba (3)	8
106	Toca da Gameleira	-15.483747	-48.050428	GO-113	Padre Bernardo	GO	Ce	Al (8)	11
107	Gruta Índio I	-14.588390	-48.993068	GO-115	Barro Alto	GO	Ce	Ba (1)	8
108	Gruta Índio II	-14.588081	-48.992876	GO-116	Barro Alto	GO	Ce	Ba (2)	8
109	Caverna Pasto	-14.586042	-49.009032	GO-119	Barro Alto	GO	Ce	Me (4)	8
110	Gruta Norim	-14.304841	-49.009632	GO-123	Uruaçú	GO	Ce	Ba (3)	8
111	Caverna Afonsão	-14.240741	-48.946031	GO-127	Uruaçú	GO	Ce	Ba (3)	8
112	Gruta do Levinão	-13.929340	-48.467928	GO-144	Campinaçú	GO	Ce	Ba (3)	8
113	Gruta Levino I	-13.930140	-48.467928	GO-145	Campinaçú	GO	Ce	Ba (1)	8
114	Gruta Carneiro	-13.813240	-48.513528	GO-147	Campinaçú	GO	Ce	Me (5)	8
115	Gruta Gameleira	-13.987141	-48.398228	GO-148	Campinaçú	GO	Ce	Me (5)	8
116	Gruta Megahelix	-13.995714	-48.403624	GO-156	Campinaçú	GO	Ce	Ba (2)	8
117	Gruta Fenda I	-13.995019	-48.402864	GO-157	Campinaçú	GO	Ce	Ba (2)	8
118	Gruta Canion	-13.991751	-48.421664	GO-161	Campinaçú	GO	Ce	Ba (2)	8
119	Gruta Urubu	-13.836790	-48.481376	GO-166	Campinaçú	GO	Ce	Ba (2)	8
120	Gruta dos Ecos	-15.689858	-48.406454	GO-18	Cocalzinho d Goiás	GO	Ce	Ba (1)	8
121	Gruta Riacho Fundo	-14.474643	-48.334628	GO-190	Niquelândia	GO	Ce	Me (6)	8
122	Gruta Morro da Coruja I	-14.358743	-48.202927	GO-191	Niquelândia	GO	Ce	Ba (2)	8
123	Caverna da Lapa	-14.573390	-48.956666	GO-213	Niquelândia	GO	Ce	El (10)	8
124	Gruta Igrejinha	-13.996841	-48.301827	GO-230	Niquelândia	GO	Ce	Ba (2)	8
125	Caverna NH3	-17.220150	-49.807643	GO-300	Indiara	GO	Ce	Me (6)	28

N°	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
126	Caverna Lapa Grande	-17.219193	-49.808536	GO-301	Indiara	GO	Ce	Me (6)	28
127	Lapa do Joel	-17.204350	-49.787143	GO-302	Indiara	GO	Ce	Me (5)	28
128	Caverna Marimbondos	-17.217150	-49.810443	GO-303	Indiara	GO	Ce	Al (8)	28
129	Gruta Landim	-14.540833	-46.085139	GO-366	Mambai	GO	Ce	Me (4)	22
130	Gruta Fundo Quintal I	-14.488258	-46.119278	GO-367	Mambai	GO	Ce	Me (4)	13
131	Lapa do Sumidouro	-14.323054	-46.245131	GO-372	Posse	GO	Ce	Al (8)	13
132	Gt. dos Revolucionários	-14.291526	-46.253439	GO-374	Posse	GO	Ce	Al (7)	13, 22
133	Caverna Asa Branca I	-14.295558	-46.256752	GO-375	Posse	GO	Ce	Al (8)	22
134	Gruna Meândrica	-14.413781	-46.186884	GO-378	Mambai	GO	Ce	Ba (3)	22
135	Gruta Judite	-14.407265	-46.195494	GO-386	Mambai	GO	Ce	El (18)	13, 22
136	Gruta do Penhasco	-14.436233	-46.226426	GO-387	Buritinópolis	GO	Ce	Ba (1)	13
137	Gruta da Tarimba	-14.412294	-46.175097	GO-394	Mambai	GO	Ce	Ba (2)	13
138	Lapa Rio das Pedras 1	-14.532268	-46.105514	GO-399	Mambai	GO	Ce	Me (4)	13
139	Lapa do Trombador	-14.540056	-46.097983	GO-401	Mambai	GO	Ce	Ba (1)	13
140	Lapa Fazenda Buritizinho	-14.452565	-46.216590	GO-403	Damianópolis	GO	Ce	Al (7)	13, 22
141	Gruna Fazenda Bananal	-14.363606	-46.208200	GO-407	Buritinópolis	GO	Ce	Al (8)	22
142	Lapa da Fazenda Guerobal	-14.534055	-46.267789	GO-415	Damianópolis	GO	Ce	Ba (1)	13
143	Gruta Nova Esperança	-14.432667	-46.155557	GO-416	Mambai	GO	Ce	Me (6)	22
144	Gruta Fazenda Extrema I	-14.426697	-46.161011	GO-420	Mambai	GO	Ce	Al (9)	22
145	Lapa Rio das Pedras 4	-14.533288	-46.110710	GO-430	Mambai	GO	Ce	Al (7)	13
146	Gruta Fazenda Arroz	-14.455748	-46.152692	GO-445	Mambai	GO	Ce	Me (5)	22
147	Lapa da Lapa	-14.482056	-46.302906	GO-451	Damianópolis	GO	Ce	El (11)	22
148	Caverna Ventura I	-14.473075	-46.120269	GO-456	Mambai	GO	Ce	Al (8)	22
149	Pedra da Toca da Onça	-15.483476	-47.306596	GO-57	Formosa	GO	Ce	Al (9)	30
150	Gruta Imbé	Não informado	Não informado	GO-69	Padre Bernardo	GO	Ce	Ba (2)	3
151	Gruta Morro	-15.450447	-48.150429	GO-72	Padre Bernardo	GO	Ce	El (13)	11
152	Gruta Olho d'água	-15.113700	-44.169600	MG-288	Itacarambi	MG	Ca	El (14)	10, 6
153	Gruta Bonita	-15.107600	-44.240900	MG-32	Januária	MG	Ce	Ba (1)	6
154	Gruta do Salitre	-19.121807	-44.350615	MG-361	Cordisburgo	MG	Ce	Ba (1)	6
155	Gruta Tamboril	-16.323800	-46.984300	MG-396	Unaí	MG	Ce	Ba (2)	3
156	Gruta São Miguel	-20.570915	-56.725024	MS-09	Bodoquena	MS	Ce	Me (5)	15
157	Gruta Curupira	-15.185700	-56.774700	MT-28	Rosário do Oeste	MT	Ce	Ba (1)	3

Nº	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
158	Gruta Wukorangma	Não informado	Não informado	NÃO	Medicelândia	PA	Am	Ba (1)	4
159	Gruta Upu Muren	Não informado	Não informado	NÃO	Medicelândia	PA	Am	Ba (1)	4
160	Gruta do Piriá	-1.202800	-46.293300	PA-01	Viseu	PA	Am	Me (4)	6, 14
161	Gruta da Cobra	-1.202619	-46.293300	PA-06	Viseu	PA	Am	Ba (1)	6, 14
162	Gruta Rato	-1.203245	-46.293294	PA-08	Viseu	PA	Am	Ba (1)	6, 14
163	Gruta do Gavião	-6.025403	-50.142128	PA-09	Parauapebas	PA	Am	Ba (2)	6
164	Gruta da Onça	-6.075403	-50.117128	PA-10	Parauapebas	PA	Am	Ba (1)	6
165	Gruta do N1	-6.019602	-50.299629	PA-11	Parauapebas	PA	Am	Al (9)	6
166	Gruta do Barro	-6.075403	-50.167128	PA-16	Parauapebas	PA	Am	Ba (1)	6
167	Gruta Bomba d'água	-6.017102	-50.300429	PA-17	Parauapebas	PA	Am	Ba (1)	6
168	Gruta Pedra da Cachoeira	-3.320600	-52.331400	PA-21	Altamira	PA	Am	Ba (3)	4
169	Caverna Planaltina	-3.377500	-52.575000	PA-24	Novo Brasil	PA	Am	Me (4)	4
170	Caverna Limoeiro	-3.512500	-52.796400	PA-33	Medicelândia	PA	Am	Ba (2)	4
171	Furna da Onça	-8.542100	-37.245000	NÃO	Buique	PE	Ca	Ba (1)	6
172	Gruta Bacaetava	-25.232176	-49.207664	PR-03	Colombo	PR	Ma	Ba (1)	6
173	Gruta Lancinha	-25.165775	-49.285164	PR-06	Rio Branco do Sul	PR	Ma	Me (4)	17, 6
174	Sistema Jesuita/Fada	-25.050476	-49.072662	PR-09	Cerro Azul	PR	Ma	El (10)	25, 6
175	Gruta do Rocha	-24.747700	-49.113300	PR-106	Adrianópolis	PR	Ma	Ba (2)	6
176	Gruta do Bom Sucesso	-24.806875	-49.207962	PR-118	Cerro Azul	PR	Ma	Ba (2)	6
177	Ermida do Marciel	-24.752675	-49.096561	PR-137	Adrianópolis	PR	Ma	Ba (1)	6
178	Gruta da Toca	-25.171075	-49.306864	PR-14	Rio Branco do Sul	PR	Ma	Ba (1)	6
179	Gruta Mina do Rocha	-24.712675	-49.132961	PR-144	Cerro Azul	PR	Ma	Ba (1)	6
180	Gruta de Terra Boa	-25.216100	-49.523100	PR-15	Campo Magro	PR	Ma	Ba (1)	6
181	Gruta da Água Boa	-25.279075	-49.358565	PR-16	Almirante Tamandaré	PR	Ma	Ba (1)	6
182	Gruta de Toquinhas	-25.167675	-49.301864	PR-20	Rio Branco do Sul	PR	Ma	Ba (2)	6
183	Gruta do Pinheiro I	-25.004874	-49.635766	PR-23	Campo Largo	PR	Ma	Ba (1)	6
184	Gruta Ermida	-25.275475	-49.411065	PR-31	Campo Largo	PR	Ma	Ba (2)	18
185	Gruta do Pinheiro Seco	-24.739485	-49.548288	PR-47	Castro	PR	Ma	Ba (1)	6
186	Gruta Olhos d'água	-25.024364	-49.788251	PR-50	Castro	PR	Ma	Ba (2)	6
187	Gruta São João	-24.759589	-48.538214	PR-11	Adrianópolis	PR	Ma	Me (5)	1, 2, 6
188	Gruta Botuvera II	-27.223300	-49.155600	SC-05	Botuverá	SC	Ma	Ba (3)	16, 20
189	Gruta Botuvera I	-27.224700	-49.157000	SC-01	Mangaratiba	SC	Ma	Me (5)	16, 20

N°	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
190	Gruta Hotel Portobello	-22.93	-43.987	NÃO	Cantagalo	RJ	Ma	Ba (3)	9
191	Caverna Santana	-22.01	-42.42	NÃO	Paty de Alferes	RJ	Ma	Me (6)	9
192	Gruta Fazenda Antas	-22.458400	-43.379900	NÃO	Iporanga	RJ	Ma	Ba (2)	9
193	Sumidouro do David	-24.557556	-48.697519	NÃO	Iporanga	SP	Ma	Ba (2)	1, 2
194	Gruta Jaguatirica Mina de Cima	-24.538889	-48.714186	NÃO	Iporanga	SP	Ma	Ba (1)	1
195	Gruta Jaguatirica Mina de Baixo	-24.524222	-48.714186	NÃO	Itirapina	SP	Ma	Ba (1)	1
196	Gruta Cachoeira	-22.3	-47.83	NÃO	Altinópolis	SP	Ma	Al (7)	5
197	Gruta Águas Virtuosas	-21.06	-47.43	NÃO	Eldorado	SP	Ma	Ba (1)	21
198	Caverna do Diabo	-24.642000	-48.392400	SP-02	Iporanga	SP	Ma	Ba (2)	2, 6
199	Caverna Casa de Pedra	-24.479500	-48.589800	SP-09	Iporanga	SP	Ma	Me (6)	2, 3
200	Gruta Alambari de Cima	-24.555152	-48.664816	SP-11	Iporanga	SP	Ma	Ba (1)	1
201	Gruta Alambari de Baixo	-24.557200	-48.664400	SP-12	Iporanga	SP	Ma	El (20)	1, 2, 26
202	Abismo da Rolha	-24.567176	-48.683758	SP-121	Iporanga	SP	Ma	Ba (2)	6
203	Gruta Colorida	-24.273841	-48.419758	SP-129	Apiai	SP	Ma	Me (5)	3
204	Gruta Chapéu	-24.435000	-48.590500	SP-13	Iporanga	SP	Ma	Ba (2)	2, 6
205	Abismo Hipotenuza	-24.530556	-48.666389	SP-134	Barra do Chapéu	SP	Ma	Ba (3)	1
206	Gruta Tiraprosa	-24.400474	-49.000459	SP-137	Apiai	SP	Ma	Me (5)	1, 2
207	Gruta Calcário Branco	-24.505556	-48.740278	SP-142	Iporanga	SP	Ma	Ba (3)	1, 2
208	Ressurgência do Areias	-24.562652	-48.671716	SP-16	Ribeira	SP	Ma	El (14)	1, 2, 26
209	Gruta Porco	-24.625700	-48.958300	SP-169	Iporanga	SP	Ma	Me (4)	1, 2
210	Gruta Berta Funda	-24.559772	-48.680000	SP-17	Ipeúna	SP	Ma	Me (5)	1, 2, 6
211	Gruta do Fazendão	-22.426600	-47.789600	SP-170	Altinópolis	SP	Ma	Ba (1)	6
212	Gruta Olho de Cabra	-21.124069	-47.413538	SP-178	Altinópolis	SP	Ma	Me (4)	2, 21
213	Gruta Itambé	-21.068569	-47.437638	SP-179	Iporanga	SP	Ma	Ba (2)	2, 21
214	Caverna Areias de Cima	-24.583809	-48.700458	SP-18	Altinópolis	SP	Ma	El (10)	1, 2, 26
215	Gruta Sertãozinho de Cima	-21.065469	-47.433738	SP-180	Altinópolis	SP	Ma	Ba (2)	21, 6
216	Gruta Sertãozinho de Baixo	-21.062669	-47.424838	SP-181	Altinópolis	SP	Ma	Ba (1)	2, 21
217	Caverna Fradinhos	-21.118769	-47.427638	SP-183	Altinópolis	SP	Ma	Ba (2)	21
218	Gruta Cinco Bocas	-21.127369	-47.407338	SP-184	Iporanga	SP	Ma	Ba (1)	2, 21
219	Caverna Areias de Baixo	-24.588889	-48.713889	SP-19	Iporanga	SP	Ma	Al (8)	1, 2, 26
220	Gruta Couto	-24.533600	-48.699700	SP-20	Iporanga	SP	Ma	Al (8)	1, 2, 26
221	Gruta Morro Preto	-24.533473	-48.699159	SP-21	Iporanga	SP	Ma	El (13)	1, 2, 26

N°	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
222	Gruta Zé Maneco	-24.300526	-48.443424	SP-211	Suzano	SP	Ma	Ba (1)	3
223	Gruta da Quarta Divisão	-23.641280	-46.371539	SP-215	Ribeirão Grande	SP	Ma	Ba (1)	6
224	Abismo da Chuva	-24.265965	-48.423126	SP-234	Iporanga	SP	Ma	Ba (3)	3
225	Gruta Jane Mansfield	-24.267402	-48.445228	SP-237	Iporanga	SP	Ma	Ba (1)	6
226	Gruta Fendão	-24.272588	-48.446357	SP-239	Iporanga	SP	Ma	Ba (2)	3
227	Gruta Minotauro	-24.455697	-48.455697	SP-247	Iporanga	SP	Ma	Ba (3)	3
228	Caverna Tufo	-24.327368	-48.468122	SP-248	Iporanga	SP	Ma	Ba (1)	3
229	Caverna água Suja	-24.526799	-48.708710	SP-25	Iporanga	SP	Ma	El (11)	1, 2, 6, 26
230	Toca Córrego Grande	-24.519915	-48.714085	SP-26	Iporanga	SP	Ma	Ba (1)	2
231	Gruta Barra Bonita	-24.268469	-48.457624	SP-271	Ribeira	SP	Ma	Ba (1)	6
232	Gruta do Tigre	-24.666875	-49.054861	SP-274	Santo André	SP	Ma	Ba (2)	6
233	Gruta Quarto Patamar	-23.785282	-46.301398	SP-290	Iporanga	SP	Ma	Ba (1)	6
234	Gruta Laje Branca	-24.549200	-48.720800	SP-30	Iporanga	SP	Ma	Me (6)	1, 2, 3, 26
235	Gruta Macaquinhos 1	-24.555833	-48.700000	SP-32	Iporanga	SP	Ma	Ba (2)	1
236	Gruta Macaquinhos 2	-24.556422	-48.709350	SP-32	Guapiara	SP	Ma	Ba (1)	1
237	Gruta dos Pianos	-24.232099	-48.492178	SP-322	Guapiara	SP	Ma	Ba (1)	6
238	Gruta dos Crioulos	-22.700394	-45.625262	SP-333	Altinópolis	SP	Ma	Ba (1)	6
239	Caverna Duas Bocas	-21.072669	-47.414338	SP-357	Iporanga	SP	Ma	Ba (1)	22
240	Abismo Gurutuva	-24.534252	-48.653716	SP-36	Apiai	SP	Ma	Ba (3)	1
241	Gruta do Vieira	-24.531549	-48.855191	SP-39	Iporanga	SP	Ma	Me (6)	1, 2, 6
242	Caverna Santana	-24.533470	-48.702152	SP-41	Iporanga	SP	Ma	El (12)	1, 2, 6, 26
243	Gruta dos Paiva	-24.277069	-48.442456	SP-42	Iporanga	SP	Ma	Ba (3)	2, 6
244	Gruta da Figueira	-24.321269	-48.463427	SP-43	Iporanga	SP	Ma	Ba (1)	6
245	Gruta Paçoca	-24.565833	-48.716667	SP-44	Iporanga	SP	Ma	Ba (2)	1, 2
246	Gruta Zezo	-24.521944	-48.720556	SP-45	Ipeúna	SP	Ma	Ba (2)	1
247	Gruta Paredão	-22.426749	-47.751423	SP-450	Iporanga	SP	Ma	Al (7)	5
248	Gruta Grilo	-24.536160	-48.715527	SP-46	Iporanga	SP	Ma	Ba (3)	1
249	Gruta Betari	-24.551400	-48.682800	SP-47	Iporanga	SP	Ma	El (14)	1, 2, 26
250	Gruta do Córrego Seco	-24.552352	-48.683716	SP-49	Altinópolis	SP	Ma	El (15)	1, 2, 26
251	Caverna da Prata	-21.142518	-47.428234	SP-518	Iporanga	SP	Ma	Ba (2)	22
252	Gruta Sítio Novo	-24.576907	-48.690576	SP-52	Iporanga	SP	Ma	Ba (2)	1
253	Gruta do Jeremias	-24.640000	-48.703200	SP-53	Iporanga	SP	Ma	Me (6)	1, 2, 26

Nº	Caverna	Latitude	Longitude	SBE	Município	Estado	Bioma	Riqueza	Referência
254	Caverna Ouro Grosso	-24.544988	-48.681711	SP-54	Iporanga	SP	Ma	Me (4)	1, 2
255	Gruta das Perolas	-24.564200	-48.742500	SP-58	Iporanga	SP	Ma	Ba (1)	6
256	Gruta Termina II	-24.384500	-48.568800	SP-61	Ipeúna	SP	Ma	Ba (1)	6
257	Gruta do Fazendão	-22.426600	-47.789600	SP-70	Apiá	SP	Ma	Me (5)	2, 5
258	Gruta Espírito Santo	-24.444100	-48.616600	SP-72	Itirapina	SP	Ma	Ba (1)	6
259	Gruta Sítio da Toca	-22.198670	-47.748201	SP-95	Adrianópolis	SP	Ma	Ba (1)	2
260	Refúgio do Maroaga	-2.050600	-59.969800	AM-02	Presidente Figueiredo	AM	Am	Ba (1)	3
261	Gruta da Descoberta	-5.563245	-37.665417	NÃO	Felipe Guerra	RN	Ca	Ba (1)	31
262	Gruta do Abandono	-5.560673	-37.663934	RN-37	Felipe Guerra	RN	Ca	Me (4)	31
263	Gruta Rainha Rio Grande	-5.578233	-37.643234	RN-49	Felipe Guerra	RN	Ca	Me (4)	31
264	Gruta Túnel de Perolas	-5.559683	-37.664519	NÃO	Felipe Guerra	RN	Ca	Ba (2)	31
265	Gruta do Troglóbio	-5.556741	-37.661270	NÃO	Felipe Guerra	RN	Ca	Ba (0)	31
266	Gruta Três Lagos	-5.593288	-37.687155	RN-39	Felipe Guerra	RN	Ca	Me (5)	31
267	Gruta do Limoeiro	-20.483182	-41.172893	ES-03	Castelo	ES	Ma	El (14)	32
268	Gruta do Rio Itaúnas	-18.290147	-39.989173	NÃO	Pinheiros	ES	Ma	El (12)	32
269	Gruta Monte Líbano	Não informado	Não informado	NÃO	Cachoeiro do Itapemirim	ES	Ma	Al (8)	32

Referências: (1) Trajano, 1985; (2) Trajano, 1987; (3) Trajano e Gnaspini, 1991; (4) Trajano e Moreira, 1991; (5) Campanhã e Fowler, 1993; (6) Pinto-da-Rocha, 1995; (7) Siqueira, 1995; (8) Bredt e Júnior, 1996; (9) Esbérard et al., 1997; (10) Trajano e Gimenez, 1998; (11) Bredt et al., 1999; (12) Gregorin e Mendes, 1999; (13) Esberárd et al., 2001; (14) Pinheiro et al., 2001; (15) Pinto-da-Rocha e Sessegolo, 2001; (16) Pinto-da-Rocha et al., 2001; (17) Sessegolo et al., 2001; (18) Silva-da-Rocha et al., 2001; (19) Silva et al., 2001; (20) Arnone e Passos, 2003; (21) Zeppelini et al., 2003; (22) Esbérard et al., 2005; (23) Aguiar et al., 2006; (24) Faria et al., 2006; (25) Arnone e Passos, 2007; (26) Arnone, 2008; (27) Sbragia e Cardoso, 2008; (28) Silva et al., 2009; (29) Portela, 2010; (30) Chaves et al., 2012; (31) Coelho, 2006; (32) Ruschi, 1952 e (PE) Presente Estudo. O inventário do presente estudo (PE=58 cavernas) utilizou: a) Rede-de-neblina; b) Armadilha de fio (harp trap); c) Avistamento.

Estados: Amazonas (AM); Bahia (BA); Ceará (CE); Distrito Federal (DF); Espírito Santo (ES); Goiás (GO); Minas Gerais (MG); Mato Grosso do Sul (MS); Mato Grosso (MT); Pará (PA); Pernambuco (PE); Paraná (PR); Santa Catarina (SC); Rio de Janeiro (RJ); e São Paulo (SP).

Biomas: Amazônia (Am); Caatinga (Ca); Cerrado (Ce); e Mata Atlântica (Ma).

Recebido em 04/2014. Aceito para publicação em 04/2015.