Os efeitos dos regimes de fogo sobre a vegetação de cerrado no Parque Nacional das Emas, GO: considerações para a conservação da diversidade

Autores/as

  • Danilo Muniz Silva Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Priscilla de Paula Loiola Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Natalia Bianca Rosatti Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil
  • Igor Aurélio Silva Universidade Estadual de Campinas/Unicamp, Departamento de Biologia Vegetal, Instituto de Biologia/IB, Rua Monteiro Lobato 255, CP 6109, Campinas, SP, Brasil
  • Marcus Vinicius Cianciaruso Universidade Federal de Goiás/UFG, Departamento de Ecologia/DE, Rodovia Goiânia - Neropólis, km 13, CP 131, Goiânia, GO, Brasil
  • Marcos Antônio Batalha Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v1i2.136

Palabras clave:

biomassa vegetal, diversidade filogenética, diversidade funcional, manejo, solo

Resumen

O fogo é um importante agente evolutivo que pode causar alterações florísticas, filogenéticas e funcionais nas comunidades vegetais de cerrado, alterando a composição do solo e modificando as interações interespecíficas. Aqui discutimos os efeitos do fogo sobre a vegetação de cerrado e levantamos sugestões para o seu manejo em unidades de conservação. Com especial ênfase para trabalhos realizados no Parque Nacional das Emas, na fisionomia de campo cerrado, compilamos os seguintes resultados: em maiores frequências de fogo (queimadas anuais ou bienais) ocorre agrupamento fenotípico, diminuição da competição, diminuição da biomassa vegetal e enriquecimento dos solos; em menor frequência (sem queimadas há doze anos), há maior competição entre as espécies e grande acúmulo de biomassa seca. Além disso, diferentes regimes de fogo suportam diferentes composições florísticas, com grupos de espécies exclusivos em cada regime, tanto de espécies herbáceo-subarbustivas quanto de arbustivo-arbóreas. Portanto, sugerimos que seja mantido um mosaico com diferentes regimes de fogo e que se evitem áreas de cerrado sem queimadas por muitos anos. 

Biografía del autor/a

Danilo Muniz Silva, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Priscilla de Paula Loiola, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Natalia Bianca Rosatti, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Igor Aurélio Silva, Universidade Estadual de Campinas/Unicamp, Departamento de Biologia Vegetal, Instituto de Biologia/IB, Rua Monteiro Lobato 255, CP 6109, Campinas, SP, Brasil

Departamento de Biologia Vegetal, Universidade Estadual de Campinas

Marcus Vinicius Cianciaruso, Universidade Federal de Goiás/UFG, Departamento de Ecologia/DE, Rodovia Goiânia - Neropólis, km 13, CP 131, Goiânia, GO, Brasil

Departamento de Ecologia, Universidade Federal de Goiás

Marcos Antônio Batalha, Universidade Federal de São Carlos/Ufscar, Departamento de Botânica/DB, Laboratório de Ecologia Vegetal, Rodovia Washington Luís, km 235, CP 676, São Carlos, SP, Brasil

Depto Botânica, Universidade Federal de São Carlos/Ufscar

Citas

Beerling, D.J. & Osborne, C.P. 2006. The origin of the savanna biome. Global Change Biology, 12(11): 2023-2031.

Bond, W.J. & Midgley, J.J. 1995. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos, 73(1): 79-85.

Bond, W.J. & Midgley, J.J. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 16(1): 45-51.

Bond, W.J. & Keeley, J.E. 2005. Fire as a global ‘herbivore': the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20(7): 387-394.

Bond, W.J.; Midgley, G.F. & Woodward, F.I. 2003. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9(7): 973-982.

Bond, W.J.; Woodward, F.I. & Midgley, G.F. 2005. The global distribution of ecosystems in a world without fire. New Phytologist, 165(2): 525-538.

Bourlière, F. & Hadley, M. 1983. Present-day savannas: an overview, p. 1-17. In: Goodall, D.W. (org.) Ecosystems of the world - tropical savannas. Elsevier. 17p.

Bowman, D.M.J.S. 1998. The impact of Aboriginal landscape burning on the Australian biota. New Phytologist, 140(3): 385-410.

Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; Armas, C.; Coll, L.; Corcket, E.; Delzon, S.; Forey, E.; Kikvidze, Z.; Olofsson, J.; Pugnaire, F.; Quiroz, C.L.; Saccone, P.; Schiffers, K.; Seifan, M.; Touzard, B. & Michalet, R. 2008. Facilitation in plant communities: the past, the present and the future. Journal of Ecology, 96(1): 18-34.

Brooks, M.L.; D'Antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M. & Pyke, D. 2004. Effects of invasive alien plants on fire regimes. Bioscience, 54(7): 677-688.

Canales, J.; Trevisan, M.C.; Silva, J.F.; Caswell, H. 1994. A demographic study of an annual grass (Andropogon brevifolius Schwartz) in burnt and unburnt savanna. Acta Oecologica, 15(3): 261-274.

Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V. & Ehleringe, J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389:153-158.

Chase, J.M. 2003. Community assembly: when should history matter? Oecologia, 136(4): 489-498.

Christin, P.A.; Besnard, G.; Samaritani, E.; Duvall, M.R.; Hodkinson, T.R.; Savolainen, V. & Salamin, N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology, 18(1): 37-43.

Carvalho, R.A.; Cianciaruso, M.V.; Trindade-Filho, J.; Sagnori, M.D. & Loyola, R.D. 2010. Drafting a blueprint for functional and phylogenetic diversity conservation in the Brazilian Cerrado. Natureza & Conservação, 8(2):171-176.

Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2009. Diversidades filogenética e funcional: novas abordagens para a ecologia de comunidades. Biota Neotropica, 9(3): 93-103.

Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2010. Aboveground biomass of functional groups in the ground layer of savannas under different fire frequencies. Australian Journal of Botany, 58(3): 169-174.

Cooke, R. 1998. Human settlement of central America and northernmost South America (14,000-8000 BP). Quaternary International, 49-50: 177-190.

Coutinho, L.M. 1978. O conceito de Cerrado. Revista Brasileira de Botânica, 1(1): 17-23.

Coutinho, L.M. 1990. Fire in the ecology of the Brazilian cerrado. In: Goldammer, J.G. (ed.). Fire in the tropical biota. Springer. 22p.

França, H., M.B. Ramos-Neto, A. Setzer. 2007. O fogo no Parque Nacional das Emas. Instituto do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). 140p.

Fukami, T.; Bezemer, T.M.; Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8(12): 1283-1290.

Gidon, N. & Delibrias, G. 1986. Carbon-14 dates point to man in the Americas 32,000 years ago. Nature, 321: 769-771.

Gottsberger, G. & Silberbauer-Gottsberger, I. 2006. Life in the cerrado: a South American tropical seasonal vegetation. Vol. 1. Origin, structure, dynamics and plant use. Reta Verlag. 277p.

Govender, N.; Trollope, W.S.W. & van Wilgen, B.W. 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4): 748-758.

Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons. 456 p. Hoffmann, W.A. 1996. The effects of fire and cover on seedling establishment in a neotropical savanna. Journal of Ecology, 84(3):383- 393.

Hoffmann, W.A. 1998. Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. Journal of Applied Ecology, 35(3):422-433.

Hoffmann, W.A. 2002. Direct and indirect effects of fire on radial growth of cerrado savanna trees. Journal Tropical Ecology, 18(1):137-142.

Hoffmann, W.A.; Adasme, R.; Haridasan, M.; Carvalho, M.T.; Geiger, E.L.; Pereira, M.A.B.; Gotsch, S.G. & Franco, A.C. 2009. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90(5): 1326-1337.

Köppen, W. 1931. Grundriss der Klimakunde. Gruyter. 388p.

Lamb, E.G.; Kembel, S.W. & Cahill Jr., J.F. 2009. Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 97(1): 155-163.

Latorre, C.; Quade, J. & McIntosh, W.C. 1997. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas. Earth and Planetary Science Letters, 146: 83-96.

Ledru, M.P. 2002. Late Quaternary history and evolution of the cerrados as revealed by palynological records, p. 33-50. In: Oliveira, P.S. & Marquis, R.J. (orgs.). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press. 424p.

Lieberman, M. & Lieberman, D. 2007. Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity. Oikos, 116(3): 377-386.

Loiola, P.P.; Cianciaruso, M.V.; Silva, I.A. & Batalha, M.A. 2010. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora, 205(10): 674-681.

May, R.M. 1990. Taxonomy as destiny. Nature, 347: 129-130.

Milberg, P.; Lamont, B.B. & Perez-Fernandez, M.A. 1999. Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 145(1):125-132.

Miranda, H.S.; Bustamante, M.M.C. & Miranda A.C. 2002. The fire factor, p. 51-68. In: Oliveira, P.S. & Marquis, R.J. (orgs.). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press. 424p.

Moreira, A.G. 2000. Effects of fire protection on savanna structure in Central Brazil. Journal of Biogeography, 27(4): 1021-1029.

Oliveira-Filho, A.T. & Ratter, J.A. 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany, 52(2): 141-194.

Pausas, J.G. & Verdú, M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos, 109(1): 196-202.

Pausas, J.G. & Verdú, M. 2008. Fire reduces morphospace occupation in plant communities. Ecology, 89(8): 2181-2186.

Perry, G.L.W.; Enright, N.J.; Miller, B.P. & Lamont, B.B. 2009. Nearest-neighbour interactions in species-rich shrublands: the roles of abundance, spatial patterns and resources. Oikos, 118(2): 161-174.

Petchey, O.L. & Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters, 9(6): 741-758.

Pivello, V.R.; Oliveras, I; Miranda, H.S.; Haridasan, M.; Sato, M.N. & Meirelles, S.T. 2010. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil, 337(1-2): 111-123.

Prinzing, A.; Durka, W.; Klotz, S. & Brandl, R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London B, 268: 2383-2389.

Ramos-Neto, M.B. & Pinheiro-Machado, C. 1996. O capim-flecha (Tristachya leiostachya Ness.) e sua importaÌ‚ncia na dinaÌ‚mica do fogo no Parque Nacional das Emas, p. 68-75. In: Miranda, H.S.C.; Saito, H. & Dias, B.F.S. (eds.). Impactos de queimadas em aÌreas de cerrado e restinga. UnB/ECL. 187p.

Ramos-Neto, M.B. & Pivello, V.R. 2000. Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environmental Management, 26(6): 675-684.

San José, J.J. & Fariñas, M.R. 1991. Changes in tree density and species composition in a protected Trachypogon savanna protected for 25 years. Acta Oecologica, 12(3): 237-247.

Sarmiento, G. 1992. Adaptative strategies of perennial grasses in South America savannas. Journal of Vegetation Science, 3(3): 325-336.

Schwilk, D.W. & Ackerly, D.D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos, 94(2): 326-336.

Silva, D.M. & Batalha, M.A. 2008. Soil-vegetation relationships in cerrados under different fire frequencies. Plant and Soil, 311(1-2): 87-96 Silva, I.A. & Batalha, M.A. 2010a. Woody plant species co-occurrence in Brazilian savannas under different fire frequencies. Acta Oecologica, 36(1): 85-91.

Silva, I.A. & Batalha, M.A. 2010b. Phylogenetic structure of Brazilian savannas under different fire regimes. Journal of Vegetation Science, 21(6): 1003-1013.

Silva, I.A.; Carvalho, G.H.; Loiola, P.P.; Cianciaruso, M.V.; & Batalha, M.A. 2010. Herbaceous and shrubby species co-occurrences in Brazilian savannas: the roles of fire and chance. Community Ecology, 11(1): 97-104.

Simon, M.F.; Grether, R.; Queiroz, L.P.; Skema, C.; Pennington, R.T. & Hughes, C.E. 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Science USA, 106(48): 20359-20364.

Slingsby, J.A. & Verboom, G.A. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the Schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. American Naturalist, 168(1): 14-27.

Unesco (United Nations Educational, Scientific, and Cultural Organization). 2001. Cerrado protected areas: Chapada dos Veadeiros and Emas National Parks. Unesco. URL . (acesso em 11 de maio de 2011).

Vamosi, J.C. & Wilson, J.R.U. 2008. Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters, 11(10): 1047-1053.

Van Wilgen, B.W.; Govender, N.; Biggs, H.C.; Ntsala, D. & Funda, X.N. 2004. Response of savanna fire regimes to changing fire management policies in a large African National Park. Conservation Biology, 18(6): 1533-1540.

Verdú, M. & Pausas, J.G. 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6): 1316-1323.

Webb, C.O.; Ackerly, D.D.; McPeek, M.A. & Donoghue, M.J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33: 475-505.

Webb, C.O. & Donoghue, M.J. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5(1): 181-183.

Weiher, E. & Keddy, P.A. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74(1): 159-164.

Publicado

2011-12-12