Estimativa do tamanho de estoques pesqueiros da Amazônia baseada em dados de captura e esforço
DOI:
https://doi.org/10.37002/biodiversidadebrasileira.v7i1.617Palabras clave:
Amazon, pesca, capturabilidade, biodiversidad acuáticaResumen
La pesca es una actividad que requiere la aplicación práctica de las teoría de la ecológia de las poblaciones, y estimar el tamaño de las poblaciones de peces correctamente es esencial para que puedan ser manejados adecuadamente. Para ello uno de los parámetros clave es la capturabilidad (q), pero a menudo ha sido considerado como un parámetro constante, lo que puede conducir a evaluaciones incorrectas, tanto para el potencial de la pesca como para el estado de conservación de estas poblaciones. En este trabajo se intenta utilizar un método basado sólo en la captura y esfuerzo para hacer frente a la variabilidad potencial de la capturabilidad de algunas especies de peces comerciales del Amazonas con el fin de estimar el tamaño de sus poblaciones y los niveles de explotación de datos. Los valores del coeficiente de capturabilidad encontrados para las especies estudiadas (Colossoma
macropomum, Semaprochilodus spp., Prochilodus nigricans, Triportheus spp., Brycon spp., Myleus spp.,
Mylossoma spp., Hypophthalmus spp., Brachyplatystoma rousseauxii, Pterygoplichthys pardalis y Cichla
spp.) variaron desde el 2,8x10-5 1,3x10-4, y el valor encontraron la suma del tamaño de las poblaciones
de peces fue de alrededor de 600.000 toneladas. Se discuten las implicaciones metodológicas para el
contexto de la escasez de datos, estudios de la capturabilidade, la evaluación del estado de conservación de las especies y monitoreo de la pesca.
Citas
Arreguín-Sanchez, F. 1996. Catchability: a key parameter for fish stock assessment. Reviews in Fish Biology and Fisheries, 6(2): 221-242.
Batista, V.S.; Isaac, V.J.; Fabré, N.N.; Gonzales, J.C.A.; Almeida, O.; Rivero, S. & Oliveira Jr, J.N. (org), 2012. Peixes e pesca no Solimões-Amazonas: uma avaliação integrada. IBAMA/ProVárzea, 276 p.
Baranov, T.I. 1918. On the question of the biological basis of fisheries. Nauchn Issledov. Ikhtiologicheskii Inst. Izv. 1: 81-128.
Bayley, P.B. 1983. Central Amazon fish populations: biomass, production and some dynamics characteristics. (PhD Thesis). Dalhousie University. 330 p.
Bayley, P.B. 1989. Aquatic environments in the Amazon Basin, with an analysis of carbon sources, fish production, and yield. In: Dodge, D.P. (ed.) Proc. International Large River Symposium (LARS). Canadian Special tion of Fisheries and Aquatic Sciences, 106: 399-408.
Bayley, P.B. & Petrere 1989. Amazon fisheries: assessment methods, current status and management points. In: Dodge, D.P. (ed.). Proceedings of the International Large River Symposium. Canadian Special tion of Fisheries and Aquatic Sciences, 106: 385-398.
Beverton, R.J.H. & Holt, S.J. 1957. On the Dynamics of Exploited Fish Populations. U.K. Ministry of Agriculture and Fisheries, Fisheries Investigations. 533p.
Chrysafi, A. & Kuparinen, A. 2015. Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock assessment. Environmental Reviews, 1:1-44.
Dowling, N.A. et al. 2015. Empirical harvest strategies for data-poor fisheries: A review of the literature. Fisheries Research, 171: 141-153.
Ellis, N. & Wang, Y. 2007. Effects of fish density distribution and effort distribution. ICES Journal of Marine Science, 64: 178-191.
Francis, R.I.C.C.; Hurst, R.J. & Renwick, J.A. 2003. Quantifying annual variation in catchability for commercial and research fishing. Fishery Bulletin, 101(2): 293-304.
Fox, W.W. 1970. An exponential surplus-yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc. 99: 80-88.
Gulland, J.A. 1977. Fish population dynamics. Wiley, 372 p.
Haddon.M. 2011. Modelling and Quantitative Methods in Fisheries. 2 Ed. CRC Press, 433p
Harley, S.J.; Myers, R.A. & Dunn, A. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58: 1760-1772
Instituto Brasileiro de Geografia e Estatístca - IBGE. 2017. Projeções e estimativas da população do Brasil e das Unidades da Federação. IBGE (Acesso em 18/02/2017).
Hashemi et al. 2014. Estimation of fish composition and catchability coefficient of gillnet in the Shadegan Wetland. Iran. J. Ichthyol., 1(1): 51-60.
Henderson, P.A. & Crampton, W.G.R. 1997. A comparison of fish diversity and abundance between nutrient -rich and nutrient-poor lakes in the Upper Amazon. Journal of Tropical Ecology, 13: 175-198.
Henderson, P.A. & Hamilton, H.F. 1995. Standing crop and distribution of fish indrifting and attached floating meadow within and Upper Amazonian varzea lake. Journal of Fish Biology, 47: 266-276. Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports ET Proce´s-verbaux des Re´unions du Conseil Permanent International pour l'exploration de la Mer, 20: 1-228.
Holt, S.J.; Gulland, J.A.; Taylor, C. & Kurit, S. 1959. A standard terminology and notation for fishery dynamics. ICES J Mar Sci. 24(2): 239-242.
Hosack, G.; Peters, G. & Ludsin, S. 2014. Interspecific relationships and environmentally driven catchabilities estimated from fisheries data. Canadian Journal of Fisheries and Aquatic Science, 71: 447-463.
Isaac, V. & Almeida, M.C. 2011. El consumo de pescado en la Amazonia Brasileña. COOPESCAALC Documento Ocasional N. 13, 43p.
Jiao, Y.; Reid, K. & Nudds, T. 2006. Variation in the catchability of yellow perch (Perca flavescens) in the fisheries of Lake Erie using a Bayesian error-in-variable approach. ICES Journal of Marine Science, 63(9): 1695-1704.
Thomé-Souza, M.J.F.; Raseira, M.B.; Ruffino, M.L.; Silva, C.O.; Batista, V.S.; Barthem, R.B. & Amaral, E.S.R. 2007. Estatística Pesqueira do Amazonas e Pará- 2004. IBAMA/ProVárzea, 74 p.
Thorson, J.T. et al. 2013. A new role for effort dynamics in the theory of harvested populations and datapoor stock assessment. Canadian Journal of Fisheries and Aquatic Sciences, 70(12): 1829-1844.
Velázquez-Abunader, I.; Salas, S. & Cabrera, M.A. 2013. Differential Catchability by Zone, Fleet, and Size: The Case of the Red Octopus (Octopus maya) and Common Octopus (Octopus vulgaris) Fishery in Yucatan, Mexico. Journal of Shellfish Research, 32(3): 845-854.
Villegas-Ríos, D. et al. 2014. Life-history and activity shape catchability in a sedentary fish. Marine Ecology Progress Series, 515: 239-250.
Welcomme, R.L. 2001. Inland Fisheries Ecology and Management. Fishing New Books, Blackwell Science, FAO, 357p. Wilberg, M.J. et al. 2009. Incorporating time-varying catchability into population dynamic stock assessment models. Reviews in Fisheries Science, 18(1): 7-24.
Zhou, S. et al. 2011. Estimating multifleet catchability coefficients and natural mortality from fishery catch and effort data: comparison of Bayesian state-space and observation error models. Canadian Journal of Fisheries and Aquatic Sciences, 68(7): 1171-1181.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Biodiversidade Brasileira - BioBrasil
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Os artigos estão licenciados sob uma licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0). O acesso é livre e gratuito para download e leitura, ou seja, é permitido copiar e redistribuir o material em qualquer mídia ou formato.