Lizards as indicator species for monitoring in a Caatinga protected area

Authors

  • Flávia Batista Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0002-0942-8420
  • Aline Richter Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0001-6385-153X
  • Bruna Arbo Menezes Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0002-8144-5786
  • Paula Ribeiro D’Anunciação Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0002-0809-5353
  • Hugo Bonfim de Arruda Pinto Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0003-2691-1307
  • Arnaldo José Correia Magalhães Júnior Universidade Federal do Vale do São Francisco/UNIVASF, São Raimundo Nonato/PI, Brasil
  • Paulo de Marco Júnior Universidade Federal de Goiás/UFG, Brasil https://orcid.org/0000-0002-3628-6405
  • Lara Gomes Côrtes Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios/RAN, Goiânia/GO, Brasil https://orcid.org/0000-0001-9918-7589

DOI:

https://doi.org/10.37002/biodiversidadebrasileira.v15i2.2522

Keywords:

Squamata , environmental monitoring , conservation , semi-arid

Abstract

For nine years, lizard monitoring was carried out at ESEC Raso da Catarina, covering the phytophysiognomies of Arboreal Caatinga and Shrub-Arboreal Caatinga. We test and improve a monitoring protocol to be integrated into the Monitora Program toolbox. This study aimed to answer crucial questions to enable the monitoring of lizards in protected areas through this program, including identifying species composition and those that function as indicators for the proposed protocol. The main objectives aimed to answer: (1) if characteristic communities existed for each phytophysiognomy; (2) whether there were specific indicator species for these phytophysiognomies; and (3) if there was variation in the population dynamics of the indicator species over the years. For this purpose, we used pitfall traps to survey the species in the field. Generalized linear mixed models were used to assess whether there were differences in richness and abundance of the studied phytophysiognomies. To assess the difference in composition between the phytophysiognomies, we used a permutational multivariate analysis of variance (PERMANOVA) using distance matrices. Indicator species analyses (IndVal) were also performed to assess the relationship of species with each phytophysiognomy and identify potential indicators. Finally, the distribution of indicator species abundance through the years was calculated. The results indicated a difference in abundance and composition between the phytophysiognomies and identified seven species as indicators. More significant declines in the abundances of the species Tropidurus cocorobensis, Ameivula gr. ocellifera and Anotosaura vanzolinia were also observed in the years 2017 and 2021. The lizards proved to be an effective group for monitoring as they have communities that are very characteristic of each phytophysiognomy studied and can respond to changes in these environments.

Downloads

Download data is not yet available.

References

1. Ministério do Meio Ambiente. MMA [Internet]. 2003 [cited 2024 Aug 8]. Available from: https://www.gov.br/mma/pt-br/assuntos/ecossistemas/biomas/caatinga

2. Torres RR, Lapola DM, Gamarra NLR. Future climate change in the Caatinga. Caatinga: The Largest Tropical Dry Forest Region in South America. 2018;383–410. DOI: https://doi.org/10.1007/978-3-319-68339-3_15

3. Field CB, Barros V, Stocker TF, Dahe Q, editors. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge: Cambridge University Press; 2012. DOI: https://doi.org/10.1017/CBO9781139177245

4. Jardim AM da RF, Araújo Júnior GDN, da Silva MV, Dos Santos A, da Silva JLB, Pandorfi H, et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens (Basel). 2022;14(8):1–27. DOI: https://doi.org/10.3390/rs14081911

5. Huey RB, Bennett AF, John-Alder H, Nagy KA. Locomotor capacity and foraging behavior of kalahari lacertid lizards. Anim Behav [Internet]. 1984 [cited 2023 Sep 19];32:41–50. Available from: https://lacerta.de/AF/Bibliografie/BIB_4253.pdf DOI: https://doi.org/10.1016/S0003-3472(84)80322-X

6. Vitt LJ, Pianka ER. Historical patterns in lizard ecology: what teiids can tell us about lacertids. In: Pérez-Mellado V, Riera N, Perera A, editors. The Biology of Lacertid lizards Evolutionary and Ecological Perspectives [Internet]. Institut Menorquí d’Estudis.; 2004 [cited 2023 Sep 19]. p. 139–57. Available from: https://lacertilia.de/AF/Bibliografie/BIB_11056.pdf

7. Stalker JB, Jones JL, Hromada SJ, Nussear KE, Vandergast AG, Wood DA, et al. Livin’ la vida local: philopatry results in consistent patterns of annual space use in a long-lived lizard. J Zool. 2023 Dec 1;321(4):309–21. DOI: https://doi.org/10.1111/jzo.13118

8. Nogueira C, Valdujo PH, França FGR. Habitat variation and lizard diversity in a Cerrado area of Central Brazil. Stud Neotrop Fauna Environ. 2005 Aug;40(2):105–12. DOI: https://doi.org/10.1080/01650520500129901

9. Nogueira C, Ribeiro S, Costa GC, Colli GR. Vicariance and endemism in a Neotropical savanna hotspot: Distribution patterns of Cerrado squamate reptiles. J Biogeogr [Internet]. 2011 Oct [cited 2023 Sep 19];38(10):1907–22. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2699.2011.02538.x DOI: https://doi.org/10.1111/j.1365-2699.2011.02538.x

10. Valdujo PH, Silvano L, Colli G, Martins M. Anuran species composition and distribution patterns in brazilian cerrado, a neotropical hotspot. South American Journal of Herpetology, . 2012;7(2):63–78. DOI: https://doi.org/10.2994/057.007.0209

11. Böhm M, Williams R, Bramhall HR, Mcmillan KM, Davidson AD, Garcia A, et al. Correlates of extinction risk in squamate reptiles: The relative importance of biology, geography, threat and range size. Global Ecology and Biogeography. 2016 Apr 1;25(4):391–405. DOI: https://doi.org/10.1111/geb.12419

12. Farooq H, Harfoot M, Rahbek C, Geldmann J. Threats to reptiles at global and regional scales. Current Biology [Internet]. 2024 May;34(10):2231-2237.e2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982224004470 DOI: https://doi.org/10.1016/j.cub.2024.04.007

13. Recoder RS, Magalhães-Júnior A, Rodrigues J, Pinto HBDA, Rodrigues MT, Camacho A. Thermal constraints explain the distribution of the climate relict lizard colobosauroides carvalhoi (gymnophthalmidae) in the semiarid caatinga. South Am J Herpetol. 2018 Dec 1;13(3):249–59. DOI: https://doi.org/10.2994/SAJH-D-17-00072.1

14. Carretero MA, Lopes EP, Vasconcelos R. An ecophysiological background for biogeographic patterns of two island lizards? The Science of Nature. 2016;103(11):97. DOI: https://doi.org/10.1007/s00114-016-1422-8

15. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, et al. Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences. 2009 Jun 7;276(1664):1939–48. DOI: https://doi.org/10.1098/rspb.2008.1957

16. Silvano DL SM. Conservação de anfíbios no Brasil. Megadiversidade. 2005;1(1):79–86.

17. Ledo RMD, Colli GR. Silent Death: The New Brazilian Forest Code Does not Protect Lizard Assemblages in Cerrado Riparian Forests. South Am J Herpetol. 2016 Aug 1;11(2):98–109. DOI: https://doi.org/10.2994/SAJH-D-16-00025.1

18. Oliveira EF, Martinez PA, São-Pedro VA, Gehara M, Burbrink FT, Mesquita DO, et al. Climatic suitability, isolation by distance and river resistance explain genetic variation in a Brazilian whiptail lizard. Heredity (Edinb). 2018 Mar 1;120(3):251–65. DOI: https://doi.org/10.1038/s41437-017-0017-2

19. Moura, Mario R., and Walter Jetz. "Shortfalls and opportunities in terrestrial vertebrate species discovery." Nature ecology & evolution 5.5 (2021): 631-639. DOI: https://doi.org/10.1038/s41559-021-01411-5

20. Uchôa LR, Delfim FR, Mesquita DO, Colli GR, Garda AA, Guedes TB. Lizards (Reptilia: Squamata) from the Caatinga, northeastern Brazil: Detailed and updated overview. Vol. 72, Vertebrate Zoology. Senckenbergische Naturforschende Gesellschaft; 2022. p. 599–659. DOI: https://doi.org/10.3897/vz.72.e78828.figure20

21. ICMBIO. Instrução Normativa no 2/Gabin/ICMBio, de 28 de janeiro de 2022. [Internet]. 2023 [cited 2023 Aug 19]. Available from: https://www.gov.br/icmbio/pt-br/assuntos/monitoramento/IN2_2022_fev.pdf

22. Cardoso JM, Barbosa LCF, Leal SI, Tabarelli M. The Caatinga: Understanding the Challenges. In: Cardoso JM, Leal SI, Tabarelli M, editors. Caatinga The Largest Tropical Dry Forest Region in South America. 2018. p. 3–20. DOI: https://doi.org/10.1007/978-3-319-68339-3_1

23. Hugo A, Barros C, Coelho J, Filho A, Barros Da Silva A, Ayane G, et al. Climatologia do Estado de Alagoas. In: Embrapa Solos - UEP Recife, editor. Recife; 2012. Available from: www.cnps.embrapa.br/publicacoes

24. Amorim VO, Bautista HP. Asteraceae da Ecorregião Raso da Catarina, Bahia, Brasil. Rodriguesia. 2016 Jul 1;67(3):785–94. DOI: https://doi.org/10.1590/2175-7860201667317

25. Cechin SZ, Martins M. Eficiência de armadilhas de queda (pitfall traps) em amostragens de anfíbios e répteis no Brasil. Rev Bras Zool. 2000;17(3):729–40. DOI: https://doi.org/10.1590/S0101-81752000000300017

26. Enge KM. The pitfalls of pitfall traps. J Herpetol. 2001;35(3):467–78. DOI: https://doi.org/10.2307/1565965

27. Guedes TB, Entiauspe-Neto OM, Costa HC. Lista de répteis do Brasil: atualização de 2022. 12 de Junho de 2023.

28. Wickham H, Chang W, Lionel Henry, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics [Internet]. 2022. Available from: https://ggplot2.tidyverse.org

29. Schauberger P, Walker A. openxlsx: Read, Write and Edit xlsx Files [Internet]. 2021. Available from: https://ycphs.github.io/openxlsx/index.html

30. Wickham H. tidyr: Tidy Messy Data [Internet]. 2021. Available from: https://tidyr.tidyverse.org

31. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Pierre Legendre, Minchin PR, et al. vegan: Community Ecology Package [Internet]. 2022. Available from: https://github.com/vegandevs/vegan

32. Dubiner S, Aguilar R, Anderson RO, Arenas Moreno DM, Avila LJ, Boada-Viteri E, et al. A global analysis of field body temperatures of active squamates in relation to climate and behaviour. Global Ecology and Biogeography. 2024 Apr 1;33(4). DOI: https://doi.org/10.1111/geb.13808

28. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2023.

29. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2024.

30. Schauberger P, Walker A. openxlsx: Read, Write and Edit xlsx Files. 2023.

31. Wickham H. tidyverse: Easily Install and Load the Tidyverse. 2023.

32. Kuznetsova A, Brockhoff PB, Christensen RHB. {lmerTest} Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82(13):1–26. DOI: https://doi.org/10.18637/jss.v082.i13

33. Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. 2022.

34. De Cáceres M. R Project. 2013. p. 29 How to use the indicspecies package (ver. 1.7.1).

35. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. 2022.

36. Garda AA, Costa TB, Santos-Silva CR dos, Mesquita DO, Faria RG, Conceição BM da, et al. Herpetofauna of protected areas in the Caatinga I: Raso da Catarina Ecological Station (Bahia, Brazil). Check List [Internet]. 2013 [cited 2023 Dec 27];9(2):405–14. Available from: www.checklist.org.b DOI: https://doi.org/10.15560/9.2.405

37. Mesquita DO, Corrêa Costa G, Garda AA, Ribeiro Delfim F. Species Composition, Biogeography, and Conservation of the Caatinga Lizards. In: Cardoso JM, Leal IR, Tabarelli M, editors. Caatinga The Largest Tropical Dry Forest Region in South America. 2017. p. 151–80. DOI: https://doi.org/10.1007/978-3-319-68339-3_6

38. Costa T, Laranjeiras D, Caldas F, Santana D, Silva C, Alcântara E, et al. Herpetofauna of protected areas in the Caatinga VII: Aiuaba Ecological Station (Ceará, Brazil). Herpetol Notes [Internet]. 2018 Nov 11 [cited 2024 Aug 11]; 11:929–41. Available from: https://www.biotaxa.org/hn/article/view/33328

39. Caldas FLS, Costa TB, Laranjeiras DO, Mesquita DO, Garda AA. Herpetofauna of protected areas in the caatinga v: Seridó ecological station (Rio Grande do Norte, Brazil). Check List. 2016;12(4). DOI: https://doi.org/10.15560/12.4.1929

40. Rodrigues MT. Herpetofauna da Caatinga. In: Ecologia e Conservação da Caatinga [Internet]. 2003 [cited 2024 Aug 8]. p. 181–236. Available from: https://www.researchgate.net/publication/326920160_Herpetofauna_da_Caatinga_in_Ecologia_e_Conservacao_da_Caatinga_Org_Leal_I_R_Tabarelli_MSilva_J_M_CRecifeUniversidade_Federal_de_Pernambuco_pp_181_236

41. Williams EE, Vanzolini PE. Notes And Biogeographic Comments On Anoles From Brasil. Pap Avulsos Zool. 1980 Apr 18;34(6):99–108. DOI: https://doi.org/10.11606/0031-1049.1980.34.p99-108

42. Paes M, Dias I. Plano de Manejo da Estação Ecológica Raso da Catarina.

43. Sales RFD, Ribeiro LB, Jorge JS, Freire EMX. Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae) in a caatinga area of northeastern Brazil. Phyllomedusa. 2011;10(2):165–76.

44. De Sousa Neto IN, Gomes VGN, Quirino ZGMI. Frugivory by Tropidurus hispidus (Squamata: Tropiduridae) on the cactus Pilosocereus pachycladus in the Brazilian Caatinga. Phyllomedusa. 2021 Jun 30;20(1):105–8. DOI: https://doi.org/10.11606/issn.2316-9079.v20i1p105-108

45. Gomes VGN, Koroiva R, Cassimiro CAL, Batista FR da C. Endangered globose cactus Melocactus lanssensianus P. J. Braun depends on lizards for effective seed dispersal in the Brazilian Caatinga. Plant Ecol. 2021 Dec 1;222(12):1375–87. DOI: https://doi.org/10.1007/s11258-021-01185-7

46. Halluan B, Oliveira S, Mesquita D. Autecology of neotropical lizard species Anotosaura vanzolinia (Squamata, Gymnophthalmidae) in a Caatinga region, north-eastern Brazil. Herpetological Journal [Internet]. 2018;19–23. Available from: https://www.researchgate.net/publication/322224281

47. Xavier MA, da Silva TL, Dias EJ dos R. Habitat use and diet of the endemic lizard Ameivula nigrigula (Squamata: Teiidae) in Caatinga domain, Northeastern Brazil. J Nat Hist. 2019 Aug 11;53(29–30):1787–97. DOI: https://doi.org/10.1080/00222933.2019.1668979

48. Sales RFD, Ribeiro LB, Jorge JS, Freire EMX. Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae) in a caatinga area of northeastern Brazil. Phyllomedusa. 2011;10(2):165–76. DOI: https://doi.org/10.11606/issn.2316-9079.v10i2p165-176

49. Todd BD, Nowakowski AJ, Rose JP, Price SJ. Species traits explaining sensitivity of snakes to human land use estimated from citizen science data. Biol Conserv. 2017 Feb 1;206:31–6. DOI: https://doi.org/10.1016/j.biocon.2016.12.013

50. Neilly H, Nordberg EJ, VanDerWal J, Schwarzkopf L. Arboreality increases reptile community resistance to disturbance from livestock grazing. Journal of Applied Ecology. 2018 Mar 1;55(2):786–99. DOI: https://doi.org/10.1111/1365-2664.12982

51. Doherty TS, Balouch S, Bell K, Burns TJ, Feldman A, Fist C, et al. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Global Ecology and Biogeography. 2020 Jul 1;29(7):1265–79. DOI: https://doi.org/10.1111/geb.13091

52. Piantoni C, Curcio FF, Ibargüengoytía NR, Navas CA. Implications of climate change on the habitat shifts of tropical lizards. Austral Ecol. 2019 Nov 1;44(7):1174–86. DOI: https://doi.org/10.1111/aec.12795

53. Oliveira JS, Santana DJ, Pantoja DL, Ceron K, Guedes TB. Climate change in open environments: Revisiting the current distribution to understand and safeguard the future of psammophilous squamates of the Diagonal of Open Formations of South America. J Arid Environ. 2024 Feb 1;220. DOI: https://doi.org/10.1016/j.jaridenv.2023.105117

54. de Andrade AC, Dellefrate Franzini L, Mesquita DO. Assessing the effect of urbanization on tropical forest dwelling teiid lizards. Ecol Indic. 2019 Apr 1;99:225–9. DOI: https://doi.org/10.1016/j.ecolind.2018.12.037

55. Brasileiro AC, Benício RA, Gonçalves-Sousa JG, Ávila RW. Influence of vegetation regeneration and agricultural land use on lizard composition, taxonomic and functional diversity between different vegetation types in Caatinga domain, Brazil. Austral Ecol. 2023 Nov 1;48(7):1274–91. DOI: https://doi.org/10.1111/aec.13349

56. Newbold T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 2023, 285: 20180792. DOI: https://doi.org/10.1098/rspb.2018.0792

Published

2025-06-03

Most read articles by the same author(s)